Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 731-738    DOI: 10.3724/SP.J.1037.2013.00033
Current Issue | Archive | Adv Search |
APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL
WEI Hailian1), LIU Guoquan1,2), XIAO Xiang1), ZHANG Minghe2)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

WEI Hailian, LIU Guoquan, XIAO Xiang, ZHANG Minghe. APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL. Acta Metall Sin, 2013, 49(6): 731-738.

Download:  PDF(669KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The constitutive relationships of a 35Mn2 steel during hot compression testing were systematically investigated using three methods. The first method is a conventional hyperbolic sine equation with peak stress dependent constants, the activation energy Q determined by this method is about 278 kJ/mol, very close to the austenite lattice self--diffusion activation energy (270 kJ/mol), indicating the rate-controlling mechanism is dislocation climb controlled by diffusion. The second method is a developed hyperbolic sine equation with strain dependent constants, comparing with experimental results, the correlation coefficient and average relative error ofpredicted and measured values are 0.991 and 4.19%, respectively, indicating that the developed equations can give an accurate estimate of the flow stress for the experimental steel. The third method is a physically based approach accounting for the dependence of the Young’s modulus and the self-diffusion coefficient of austenite on temperature, which is also capable of representing the flow stress of the material as a function of the deformation conditions, but the fitting precision by this method is lower than by the conventional hyperbolic sine equation, and through modification, the fitting precision of the physically based approach is improved in this work.

Key words:  35Mn2 steel      hot deformation      constitutive relationship     
Received:  17 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00033     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/731

[1] Wu Z F, Zhang D J, Pei R Y, Wang D C, Yan M L.  Oil Field Equipment, 2000; 29(4): 30

(吴宗福, 张栋杰, 裴润有, 王大创, 严密林. 石油矿场机械, 2000; 29(4): 30)
[2] Mirzadeh H, Cabrera J M, Prado J M, Najafizadeh A.  Mater Sci Eng, 2011; A528: 3876
[3] Meysami M, Mousavi S A A A.  Mater Sci Eng, 2011; A528: 3049
[4] Chen L, Wang L M, Du X J, Liu X.  Acta Metall Sin, 2010; 46: 52
(陈雷, 王龙妹, 杜晓健, 刘晓. 金属学报, 2010; 46: 52)
[5] Sun C Y, Luan J D, Liu G, Li R, Zhang Q D.  Acta Metall Sin, 2012; 48: 853
(孙朝阳, 孪京东, 刘赓, 李瑞, 张清东. 金属学报, 2012; 48: 853)
[6] Xiao X, Liu G Q, Hu B F, Zheng X, Wang L N, Chen S J, Ullah A.  Comp Mater Sci, 2012; 62: 227
[7] Zhao H T, Liu G Q, Xu L.  Mater Sci Eng, 2013; A559: 262
[8] Wu K, Liu G Q, Hu B F, Li F, Zhang Y W, Tao Y, Liu J T.  Mater Des, 2011; 32: 1872
[9] Wei H L, Liu G Q, Xiao X, Zhao H T, Ding H, Kang R M.  Mater Sci Eng, 2013; A564: 140
[10]Wang Z X, Liu X F, Xie J X.  Acta Metall Sin, 2008; 44: 1378
(王智祥, 刘雪峰, 谢建新. 金属学报, 2008; 44: 1378)
[11] Mirzadeh H, Najafizadeh A.  Mater Sci Eng, 2010; A527: 1160
[12] Zhang H G, He Y, Liu X F, Xie J X.  Acta Metall Sin, 2007; 43: 930
(张红钢, 何勇, 刘雪峰, 谢建新. 金属学报, 2007; 43: 930)
[13] Tan Y J, Pan Q L, He Y B, Li W B, Liu X Y, Fan X.  Acta Metall Sin, 2009; 45: 887
(覃银江, 潘清林, 何运斌, 李文斌, 刘晓艳, 范曦. 金属学报, 2009; 45: 887)
[14] Mirzadeh H, Cabrera J M, Najafizadeh A.  Acta Mater, 2011; 59: 6441
[15] El Wahabi M, Cabrera J M, Prado J M.  Mater Sci Eng, 2003; A343: 116
[16] Lou Y, Li L X, Zhou J, Na L.  Mater Charact, 2011; 62: 346
[17] Cabrera J M, Al Omar A, Jonas J J, Prado J M.  Metall Mater Trans, 1997; 28A: 2233
[18] Cabrera J M, Ponce J, Prado J M.  J Mater Process Technol, 2003; 143--144: 403
[19] Cabrera J M, Jonas J J, Prado J M.  Mater Sci Technol, 1996; 12: 579
[20] Frost H J, Ashby M F. Deformation--Mechanism Maps: the Plasticity and Creep of Metals and Ceramics. Oxford: Pergamon Press, 1982: 21
[21] Mirzadeh H, Najafizadeh A, Moazeney M.  Metall Mater Trans, 2009; 40A: 2950
[22] McQueen H J, Yue S, Ryan N D, Fry E.  J Mater Proc Technol, 1995; 53: 293
[23] Medina S F, Hernandez C A.  Acta Mater, 1996; 44: 137
[24] Galiyev A, Kaibyshev R, Gottstein G.  Acta Mater, 2001; 49: 1199
[25] Srinivasan N, Prasad Y V R K, Rama Rao P.  Mater Sci Eng, 2008; A476: 146
[26] Seshacharyulu T, Medeiros S C, Frazier W G, Prasad Y V R K.  Mater Sci Eng, 2002; A325: 112
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[3] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[4] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[5] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[6] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[9] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[10] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[11] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[12] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[13] Cunyu WANG,Ying CHANG,Jie YANG,Kunmin ZHAO,Han DONG. THE COMBINED EFFECT OF HOT DEFORMATION PLUS QUENCHING AND PARTITIONING TREATMENT ON MARTENSITE TRANSFORMATION OF LOW CARBON ALLOYED STEEL[J]. 金属学报, 2015, 51(8): 913-919.
[14] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
[15] LI Junru, GONG Chen, CHEN Lie, ZUO Hui, LIU Yazheng. HOT DEFORMATION BEHAVIOR OF BLADES STEEL 10Cr12Ni3Mo2VN FOR ULTRA- SUPERCRITICAL UNITS[J]. 金属学报, 2014, 50(9): 1063-1070.
No Suggested Reading articles found!