Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 621-628    DOI: 10.3724/SP.J.1037.2012.00720
Current Issue | Archive | Adv Search |
EFFECTS OF Al AND Zn ADDITION ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CAST Mg-5Sn ALLOY
DONG Xuguang, FU Junwei, YANG Yuansheng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

DONG Xuguang, FU Junwei, YANG Yuansheng. EFFECTS OF Al AND Zn ADDITION ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CAST Mg-5Sn ALLOY. Acta Metall Sin, 2013, 49(5): 621-628.

Download:  PDF(3870KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A cast Mg-5Sn-4Zn-2Al alloy was developed by adding 2%Al and 4%Zn (mass fraction) into a Mg-5Sn base alloy. The results showed that the combined addition of Al and Zn had more obvious effect on dendrite refinement than the single Al addition. The single Al addition remarkably increased the elongation from 6.6% to 22.4%. With further addition of Zn, Mg32(Al, Zn)49 phase was introduced into the solidified microstructure, and the yield strength and ultimate tensile strength were increased to 96 and 232 MPa while elongation was decreased to 14.8%. After aging treatment at 175 ℃ for 24 h, there appeared peak hardness of 83.5 HV by forming the rod-shaped MgZn2 along c-axis and cubic Mg2Sn precipitates into α-Mg matrix for Mg-5Sn-4Zn-2Al alloy. With the aging strengthening, the yield strength and ultimate tensile strength were further increased to 144 and 264 MPa, respectively. When the testing temperature was elevated to 150 ℃, the yield strength of peak-aged Mg-5Sn-4Zn-2Al alloy still attained to 138 MPa, which indicated that both the MgZn2 and Mg2Sn precipitates possess good thermal stability for elevated temperature property.

Key words:  Mg-5Sn alloy      addition of Al and Zn      microstructure      aging strengthening      mechanical property      fracture analysis     
Received:  07 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00720     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/621

[1] Liu H M, Chen Y G, Tang Y B, Wei S H, Niu G.  J Alloys Compd, 2007; 440: 122


[2] Nayyeri G, Mahmudi R.  Mater Sci Eng, 2010; A527: 4613

[3] Poddara P, Sahooa K L, Mukherjeeb S, Raya A K.  Mater Sci Eng, 2012; A545: 103

[4] Cheng W L, Park S S, You B S, Koo B H.  Mater Sci Eng, 2012; A527: 4650

[5] Park S S, Tang W N, You B S.  Mater Lett, 2010; 64: 31

[6] Sasaki T T, Yamamoto K, Honma T, Kamadob S, Honoa K.  Scr Mater, 2008; 59: 1111

[7] C'aceres C H, Rovera D M.  J Light Met, 2001; 1: 151

[8] Blake A H, C'aceres C H.  Mater Sci Eng, 2008; A483-484: 161

[9] Shi B Q, Chen R S, Ke W.  J Alloys Compd, 2011; 509: 3357

[10] Liu H M, Chen Y G, Zhao H F, Wei S H, Gao W.  J Alloys Compd, 2010; 504: 345

[11] Liu H M, Chen Y G, Tang Y B, Huang D M, Niu G.  Mater Sci Eng, 2006; A437: 348

[12] Yang M B, Pan F S.  Mater Sci Eng, 2009; A525: 112

[13] Yang M B, Pan F S, Cheng L, Shen J.  Mater Sci Eng, 2009; A512: 132

[14] Kim B H, Lee S W, Park Y H, Park I M.  J Alloys Compd, 2010; 493: 502

[15] Lee S G, Jeon J J, Park K C, Park Y H, Park I M.  Mater Chem Phys, 2011; 128: 208

[16] Kang D H, Park S S, Kim N J.  Mater Sci Eng, 2005; A413-414: 555

[17] Park S S, You B S.  Scr Mater, 2011; 65: 202

[18] Son H T, Lee J B, Jeong H G, Konno T J.  Mater Lett, 2011; 65: 1966

[19] Lim H K, Kim D H, Lee J Y, Kim W T, Kim D H.  J Alloys Compd, 2009; 468: 308

[20] Emley E F.  Principles of Magnesium Technology. London: Pergamon Press, 1966: 969

[21] Chen J H, Chen Z H, Yan H G, Zhang F Q, Liao K.  J Alloys Compd, 2008; 461: 209

[22] Harosh S, Miller L, Levi G, Bamberger M.  J Mater Sci, 2007; 42: 9983

[23] Mendis C L, Bettles C J, Gibson M A, Hutchinson C R.  Mater Sci Eng, 2006; A435-436: 163

[24] Sasaki T T, Oh-ishi K, Ohkubo T, Hono K.  Scr Mater, 2006; 55: 251

[25] Sasaki T T, Oh-ishi K, Ohkubo T, Hono K.  Mater Sci Eng, 2011; A530: 1

[26] Lee Y C, Dahle A K, Stjohn D H.  Metall Mater Trans, 2000; 31A: 2895

[27] Fu J W, Yang Y S.  J Cryst Growth, 2011; 322: 84

[28] Hu H Q.  Principal of Metal Solidification. Beijing: China Machine Press, 2008: 117

(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2008: 117)

[29] Tang W N, Park S S, You B S.  Mater Design, 2011; 32: 3537

[30] Nave M D, Dahle A K, Stjohn D H. In: Kaplan H I, Hryn J, Clow B eds.,  Magnesium Technology 2000.

Tennessee: The Minerals, Metals & Materials Society, 2000: 233

[31] Lu Y Z, Wang Q D, Ding W J, Zeng X Q, Zhu Y P.  Mater Lett, 2000; 44: 265

[32] Nie J F.  Scr Mater, 2003; 48: 1009
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!