Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 614-620    DOI: 10.3724/SP.J.1037.2012.00716
Current Issue | Archive | Adv Search |
SURFACE LAYER NANO-MECHANICAL RESPONSES TO INTERACTION BETWEEN CAVITATION AND ELECTROCHEMICAL CORROSION
ZHANG Ru, SHEN Hanjie, ZHANG Yaqin, LI Dongliang, LI Yanjia, YONG Xingyue
State Key laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029
Cite this article: 

ZHANG Ru, SHEN Hanjie, ZHANG Yaqin, LI Dongliang, LI Yanjia, YONG Xingyue. SURFACE LAYER NANO-MECHANICAL RESPONSES TO INTERACTION BETWEEN CAVITATION AND ELECTROCHEMICAL CORROSION. Acta Metall Sin, 2013, 49(5): 614-620.

Download:  PDF(1089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cavitation corrosion resistances of metals have a very much closed relationship with the mechanical properties of their surface layer. It is very important to investigate effects of surface layer mechanical properties on cavitation corrosion to understand synergistic mechanism. Nano-indentation technology is a sensitively power tool for measuring surface layer mechanical properties in nanometer scale. In this work, it was used to study the effects of anodic polarization on the surface layer nano-mechanical properties (nano-hardness, Hnano and nano-elastic modulus, Enano) of austenitic stainless steel under cavitation. The synergistic mechanism of cavitation corrosion caused by anodic polarization was also investigated by weight loss in conjunction with SEM. The surface layer comprehensive nano-mechanical parameter was defined as (H/E)nano. It was found that the profiles of Hnano, Enano and (H/E)nano with displacement into surface (L) are very different at different anodic polarized potentials. Hnano and (H/E)nano decrease and Enano increases with the increment of logarithm of anodic current density. When the samples under cavitation were polarized at passive region, cavitation corrosion of austenitic stainless steel is mainly controlled by erosion. However, it is mainly dominated by  corrosion-induced erosion and erosion--induced corrosion, respectively, if anodic polarized potentials were controlled at the beginning of passive to super-passive and super-passive regions. The surface layer nano-hardness is a key factor dominating cavitation corrosion resistances of metals. During the interaction of cavitation with electrochemical corrosion, mass loss of corrosion-induced erosion, which is called non-Faraday weight loss, increases as a result of electrochemical corrosion. The corresponding corroded morphologies with microgrooves, micro-holes and micro-pits were observed.

Key words:  austenitic stainless steel      nano-indentation      surface layer nano-mechanical property      cavitation     
Received:  04 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00716     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/614

[1] Kerella A K.  Eng Failure Analysis, 2011; 18: 855


[2] Barik R C, Wharton J A, Wood R J, Stokes K R.  Wear, 2009; 267: 1900

[3] Yong X Y, Hou C Y, Wu J, Ji J, Zhang Z, Wang J.  Corrosion, 2011; 67: 045003-1

[4] Kwok C T, Cheng F T, Man H C.  Mater Sci Eng, 2000; A290: 145

[5] Yong X Y, Hou C Y, Wu J, Ji J, Zhang Z, Li D L.  Corrosion, 2011; 67: 095003-1

[6] Godoy C, Mancosu R D, Machado R R, Moodenesi P J, Avelar-Bastista J C.  Tribology Int, 2009; 42: 1021

[7] Liu W, Zheng Y G, Liu C S, Yao Z M, Ke W.  Wear, 2003; 254: 713

[8] Wang Z Y, Zhu J H.  Acta Metall Sin, 2003; 39: 273

(王再友, 朱金华. 金属学报, 2003; 39: 273)

[9] Wang Z Y, Zhu J H, Wang Z Z.  Acta Metall Sin, 2007; 43: 648

(王再友, 朱金华, 王章忠. 金属学报, 2007; 43: 648)

[10] Cheng F T, Shi P, Man H C.  Mater Charact, 2004; 52: 129

[11] Kerella A.  Wear, 2011; 270: 252

[12] Kerella A K.  Surf Coat Technol, 2010; 205: 2687

[13] Kerella A.  Surf Coat Technol, 2009; 204: 263

[14] Yong X Y, Ji J, Zhang Y Q, Li D L, Zhang Z J.  J Chin Soc Corros Protect, 2011; 31: 40

(雍兴跃, 吉静, 张雅琴, 李栋梁, 张占佳. 中国腐蚀与防护学报, 2011; 31: 40)

[15] Guo H X, Lu B T, Luo J L.  Electrochem Commun, 2006; 8: 1092

[16] Guo H X, Lu B T, Luo J L.  Electrochim Acta, 2005; 51: 315

[17] Fu W T, Zheng Y Z, He X K.  Wear, 2001; 249: 788

[18] Li D L, Zou G C, Zheng G T, Yong X Y.  Chin J Mater Res, 2012; 26: 274

(李栋梁, 邹冠驰, 郑根土, 雍兴跃. 材料研究学报, 2012; 26: 274)

[19] Wang B C, Zhu J H.  Ultrason Sonochem, 2008; 15: 239

[20] Yong X Y, Liu J J, Lin Y Z.  J Chem Ind Eng (China), 2003; 54: 1713

(雍兴跃, 刘景军, 林玉珍. 化工学报, 2003; 54: 1713)

[21] Wang B C, Zhu J H.  Acta Metall Sin, 2007; 43: 813

(王宝成, 朱金华. 金属学报, 2007; 43: 813)

[22] Lavigne O, Takeda Y, Shoji T, Sakaguchi K.  Ultrason Sonochem, 2011; 18: 1287

[23] Li D L.  Master Thesis, Beijing University of Chemical Technology, 2012

(李栋梁. 北京化工大学硕士学位论文, 2012)

[24] Lopez D, Faalleriros N A, Tschiptschin A P.  Tribology Int, 2011; 44: 610

[25] Stack M M, Abdulrahman G H.  Tribology Int, 2010; 43: 1268

[26] Stack M M, James J S, Lu Q.  Wear, 2004; 256: 557
[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[6] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[7] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[9] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[10] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[11] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[12] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[13] Sihan CHEN,Tian LIANG,Long ZHANG,Yingche MA,Zhengjun LIU,Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. 金属学报, 2017, 53(4): 397-405.
[14] Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 945-955.
[15] Yanxin QIAO,Shuo WANG,Bin Liu,Yugui ZHENG,Huabing LI,Zhouhua JIANG. SYNERGISTIC EFFECT OF CORROSION AND CAVITATION EROSION OF HIGH NITROGEN STAINLESS STEEL[J]. 金属学报, 2016, 52(2): 233-240.
No Suggested Reading articles found!