Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 435-442    DOI: 10.3724/SP.J.1037.2012.00647
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION OF Al-Fe ALLOYS PREPARED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING
GU Jian, GU Sasa, XUE Lihong, WU Shusen, YAN Youwei
State Key Laboratory of Materials Processing and Die and Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article: 

GU Jian, GU Sasa, XUE Lihong, WU Shusen, YAN Youwei. MICROSTRUCTURE EVOLUTION OF Al-Fe ALLOYS PREPARED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING. Acta Metall Sin, 2013, 29(4): 435-442.

Download:  PDF(3707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Fe alloys have wide potential applications in automobile and aerospace industries due to their high specific strength, high specific stiffness, good stability of microstructure and excellent high temperature strength. However, a wide variety of metastable phases can be formed in Al-Fe binary system, such as Al(Fe) supersaturated solid solution, amorphous and intermetallic phase. In order to better understand the phase formation in Al-Fe alloys, a systematic investigation of microstructure evolution is necessary. In this work, bulk dense Al-5Fe alloys were fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The phases, microstructures and morphologies of MA powders and the corresponding sintered samples were characterized by XRD, SEM and EDS. Special attention was paid to the effects of different milling times on structural change of phases during MA-SPS process. The results showed that during the MA, the size of alloy powders increased with increasing milling time (0--10 h), and then decreased with further milling time (10--20 h). The (111)Al peaks in XRD spectra of MA powders shifted to higher angles with the increase of milling time, indicating the dissolution of Fe atoms into the Al crystal lattice. Homogeneous Al(Fe) solid solutions were obtained after MA for 20 h. Bulk samples sintered from MA powders of 0 and 10 h contained Al/Al13Fe4/Al5Fe2/Fe layer structure intermetallic phase and tiny Al13Fe4 phase in the Al matrix. However, bulk sample sintered from MA powders of 20 h contained only relatively small Al13Fe4 phase in the Al matrix. Based on thermodynamic analysis (effective heat of formation theory) and kinetic analysis (spherical shell model), the primary phase that formed on the interfacial layer of Al/Fe was Al13Fe4, and then Al5Fe2 can be formed by the reaction of residual Fe and Al13Fe4 for the lower Gibbs free energy of Al5Fe2 compared to that of Al13Fe4, leading to the formation of Al/Al13Fe4/Al5Fe2/Fe layer structure intermetallic phase. The absence of Al5Fe2 and Fe phases in sample sintered from MA powders of 20 h were attributed to the complete reaction between relatively small Fe particles and Al melt during SPS process.

Key words:  Al-Fe alloy      mechanical alloying      spark plasma sintering      microstructure     
Received:  29 October 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00647     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/435

[1] Krasnowski M, Kulik T. Intermetallics, 2010; 18: 47


[2] Deevi S C, Sikka V K, Liu C T. Prog Mater Sci, 1997; 42: 177

[3] Froes F H, Senkov O N, Baburaj E G. Mater Sci Eng, 2001; A301: 44

[4] Wang W H, Xiao K Q, Chu Z Q, Dong Y D. Acta Metall Sin, 1990; 26: 97

(汪卫华, 肖克勤, 储昭琴, 董远达. 金属学报, 1990; 26: 97)

[5] Huang B, Ishihara K N, Shingu P H. Mater Sci Eng, 1997; A231: 72

[6] Zou Y, Saji S, Kusabiraki K. Mater Res Bull, 2002; 37: 123

[7] Nayak S S, Wollgarten M, Banhart J, Pabi S K, Murty B S. Mater Sci Eng, 2010; A527: 2370

[8] Shamah A M, Ibrahim S, Hanna F F. J Alloys Compd, 2011; 509: 2198

[9] Wang L, Cong H R, Zhang J, Bian X, Li H, Qin J. Phys Lett, 2002; 301A: 477

[10] Nayak S S, Murty B S, Pabi S K. Bull Mater Sci, 2008; 31: 449

[11] Nayak S S, Chang H J, Kim D H, Pabi S K, Murty B S. Mater Sci Eng, 2011; A528: 5967

[12] Sasaki H, Kita K, Nagohora J, Inoue A. Mater Trans, 2001; 42: 1561

[13] Mukai T, Suresh S, Kita K, Sasaki H, Kobayashi N, Higashi K, Inoue A. Acta Mater, 2003; 51: 4197

[14] Senkov O N, Frees F H, Stolyarov V V, Va1iev R Z, Liu J. Acta Mater, 1998; 10: 691

[15] Stolyarov V V, Lapovok R, Brodova I G, Thomson P F. Mater Sci Eng, 2003; A357: 159

[16] Sasaki T T, Mukai T, Hono K. Scr Mater, 2007; 57: 189

[17] Sasaki T T, Ohkubo T, Hono K. Acta Mater, 2009; 57: 3529

[18] Suryanarayana C. Prog Mater Sci, 2001; 46: 1

[19] Hu Q D, Luo P, Yan Y W. J Alloys Compd, 2008; 459: 163

[20] Kattner U R. In: Massalski T B, ed., Binary Alloy Phase Diagrams, Materials Park,

Ohio: ASM International, 1990: 147

[21] Krasnowski M, Kulik T. Mater Chem Phys, 2009; 116: 631

[22] Lu Z, Lu C Y, Zhang S H, Xie R, Liu C M. Acta Metall Sin, 2012; 48: 649

(吕铮, 卢晨阳, 张守辉, 谢锐, 刘春明. 金属学报, 2012; 48: 649)

[23] Song X Y, Liu X M, Zhang J X. J Am Ceram Soc, 2006; 89: 494

[24] Liu X M, Song X Y, Zhang J X. Acta Metall Sin, 2006; 42: 757

(刘雪梅, 宋晓艳, 张久兴. 金属学报, 2006; 42: 757)

[25] Pretorius P, Vredenberg M, Saris F W, de Reus R. J Appl Phys, 1991; 70: 3636

[26] Jindal V, Srivastava V C, Das A, Ghosh R N. Mater Lett, 2006; 60: 1758

[27] Hibino A, Watababe R. J Jpn Inst Met, 1991; 55: 1256

(日比野敦,渡辺龍三.日本金属学会誌, 1991; 55: 1256)

[28] Eldridge J, Komarek K L. Trans Met Soc AIME, 1964; 230: 226

[29] Mizuno Y. Master Thesis, Tokyo Institute of Technology, 2001
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!