Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 443-450    DOI: 10.3724/SP.J.1037.2012.00638
Current Issue | Archive | Adv Search |
STUDY ON THE CORROSION RESISTANCE OF Zr-1Nb-0.7Sn-0.03Fe-xGe ALLOY IN LITHIATED WATER AT 360 ℃
ZHANG Jinlong1,2), XIE Xingfei1,2), YAO Meiyi1,2), ZHOU Bangxin1,2),PENG Jianchao 1,2),LIANG Xue1,2)
1) Laboratory for Microstructures, Shanghai University, Shanghai 200444
2) Institute of Materials, Shanghai University, Shanghai 200072
Cite this article: 

ZHANG Jinlong, XIE Xingfei, YAO Meiyi, ZHOU Bangxin,PENG Jianchao,LIANG Xue. STUDY ON THE CORROSION RESISTANCE OF Zr-1Nb-0.7Sn-0.03Fe-xGe ALLOY IN LITHIATED WATER AT 360 ℃. Acta Metall Sin, 2013, 29(4): 443-450.

Download:  PDF(4770KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys have low thermal neutron absorption cross-section, good corrosion resistance and adequate mechanical properties. They have been successfully developed as fuel cladding materials in pressurized water reactors. It's well known that the corrosion resistance of Zr-Sn-Nb alloys is significantly superior to that of Zircaloy-4 alloy when corroded in lithiated water. The corrosion resistance of zirconium alloys is controlled by their chemical compositions, characteristics of second phase particles (SPPs) and microstructure evolution of the oxide in them. The corrosion tests of Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0, 0.05, 0.1, 0.2, mass fraction, %) alloys were investigated by means of an autoclave test in lithiated water with 0.01 mol/L LiOH at 360 ℃ under a pressure of 18.6 MPa. The microstructures of the alloys and oxide films on the corroded specimens were examed by using TEM and SEM. The sample for the oxide microstructure observation was prepared by a HELIOS-600I focused ion beam. The results reveal that the corrosion resistance of Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys was remarkably superior to that of Zr-1Nb-0.7Sn-0.03Fe alloy.The corrosion resistance of Zr-1Nb-0.7Sn-0.03Fe alloys is markedly improved by the addition of (0.05%-0.2%)Ge. In addition to Zr-Nb-Fe-Cr SPPs with the tetragonal crystal structure (tet) and β-Nb SPPs with the bcc crystal structure, the Zr-Nb-Fe-Cr-Ge SPPs with the tet structure and Zr3Ge SPPs with the tet structure were detected out in Zr-1Nb-0.7Sn-0.03Fe-xGe alloys. The oxidation of SPPs was found to be slower than that of α-Zr matrix. There exist a few micro-cracks and more ZrO2 columnar grains in the oxide film formed on Zr-1Nb-0.7Sn-0.03Fe-0.1Ge alloys corroded for 190 d. However, more micro-cracks and ZrO2 equiaxed grains appear in the oxide film formed on Zr-1Nb-0.7Sn-0.03Fe alloys corroded for 130 d. Because the P. B. ratio of Ge is smaller than those of Zr, Nb, Fe and Cr, it is likely that the volume expansion of the oxide on Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys is smaller than that on Zr-1Nb-0.7Sn-0.03Fe alloy, and the compressive stress can be reduced and the micro-cracks can be effectively decreased in the oxide on Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys. The addition of Ge can not only delay the developing process of the defects in oxide films to form micro-pores and micro-cracks, but also retard the microstructural evolution from columnar grains to equiaxed grains. Therefore, it is concluded that the addition of Ge can improve the corrosion resistance of alloy.

Key words:  zirconium alloy      Ge      corrosion resistance      microstructure      oxide film     
Received:  25 October 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00638     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/443

[1] Comstock R J, Schoenberger G, Sable G P. In: Bradley E R, Sabol G P eds.,  Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 710


[2] Sabol G P, Kilp G R, Balfour M G, Roberts E. In: Van Swam L F P, Eucken C M eds.,  Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Baltimore: ASTM International, 1989: 227

[3] Nikulina A V, Markelov V A, Peregud M M, Bibilashvili Y K, Kotrekhov V A, Lositsky A F, Kuzmenko N V, Shevnin Y P, Shamardin V K, Kobylyansky G P, Novoselov A E. In: Sabol G P, Bradley E R eds.,  Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 785

[4] Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H.  J Alloy Compd, 2009; 479: 423

[5] Jeong Y H, Park S Y, Lee M H, Choi B K, Baek J H, Park J Y, Kim J H, Kim H G.  J Nucl Sci Technol, 2006; 43: 977

[6] Yang W D.  Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版, 北京: 原子能出版社, 2006: 260)

[7] Liu J Z.  Structure Nuclear Materials. Beijing: Chemical Industry Press, 2007: 19

(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 19)

[8] Liu W Q, Zhu X Y, Wang X J, Li Q, Yao M Y, Zhou B X.  Atom Energ Sci Technol, 2010; 44: 1477

(刘文庆, 朱晓勇, 王晓娇, 李强, 姚美意, 周邦新. 原子能科学技术, 2010; 44: 1477)

[9] Kim J M, Jeong Y H, Kim I S.  J Nucl Mater, 2000; 280: 235

[10] Liu W Q, Li Q, Zhou B X, Yao M Y.  Nucl Power Eng, 2003; 24: 33

(刘文庆, 李强, 周邦新, 姚美意. 核动力工程, 2003; 24: 33)

[11] Wagner C J.  J Chem Phy, 1950; 18: 62

[12] Hauffe K.  Reactionen in und an Fasten Stoffen. Berlin: Springer, 1966: 1

[13] Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C.  Acta Metall Sin, 2012; 48: 1487

(谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超. 金属学报, 2012; 48: 1487)

[14] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limback M eds.,  Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, West Conshohochen: American Society for Testing and Materials, 2009: 360

[15] Charquet D, Hahn R, Ortlib E. In: Van Swam L F P, Eucken C M eds.,  Zircorium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 405

[16] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L.  Nucl Power Eng, 2005; 26: 364

(周邦新, 李强, 姚美意, 刘文庆, 褚玉良. 核动力工程, 2005; 26: 364)

[17] Anada H, Takeda K. In: Sabol G P, Bradley E R eds.,  Zircorium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 35

[18] Wadman B, Lai Z, Andren H O, Nystrom A L, Rudling P, Pettersson H. In: Garde A M, Bradley E R eds., Zirconiumin in the Nuclear Industry: 10th International Symposium ASTM STP 1245, Ann Arbor: ASTM International, 1994: 579

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L.  Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 35: 1009)

[20] Park J Y, Yoo S J, Choi B K, Jeong Y H.  J Nucl Mater, 2007; 437: 274

[21] Kim H G, Choi B K, Park J Y.  J Alloy Compd, 2009; 481: 867

[22] Garzarolli F, Seidel H, Tricot R, Gros J P. In: Eucken C M, Garde A M eds.,  Zirconiumin in the Nuclear Industry: 9th International Symposium ASTM STP 1132, Baltimore: ASTM International, 1991: 395

[23] Park J Y, Choi B K, Jeong Y H, Jung Y H.  J Nucl Mater, 2005; 340: 237

[24] Liu Y Z, Park J Y, Kim H G, Jeong Y H.  Mater Chem Phys, 2010; 122: 408

[25] Yilmazbayhan A, Breval E, Motta A T, Comstock R J.  J Nucl Mater, 2006; 349: 265
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[10] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[11] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
No Suggested Reading articles found!