Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1089-1096    DOI: 10.3724/SP.J.1037.2012.00178
论文 Current Issue | Archive | Adv Search |
EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
II. Corrosion Resistance and Antibacterial Properties
XIANG Hongliang, FAN Jinchun, LIU Dong, GU Xing
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
Cite this article: 

XIANG Hongliang FAN Jinchun LIU Dong GU Xing. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
II. Corrosion Resistance and Antibacterial Properties. Acta Metall Sin, 2012, 48(9): 1089-1096.

Download:  PDF(3030KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Effects of antibacterial aging treatment on the corrosion resistance of copper-bearing duplex stainless steels were investigated by electrochemical methods. The film-cover method was used to test the antibacterial effect of the materials. The polarization curve test results show ε-Cu and other copper-rich phases become the weak point of the passive film on the surface of the duplex stainless steel, and the sites where the coarse copper-rich phases are precipitated from the matrix are apt to become pitting nucleation source. The proportion of coarse copper-rich phase increases, which makes pitting resistance of the materials worse. EIS test reveals that the presence of ε-Cu and other copper-rich phases in passive film reduces the overall potential and passive film resistance, decreasing the stability of passive film. D-EPR tests show that ε-Cu and other copper-rich phases in grain boundary makes it take on anode characteristic in corrosion process, leading to selectively intergranular corrosion. Compared with austenite, the intergranular corrosion resistance of ferrite decreases seriously because the copper-rich phases are mainly precipitated from ferrite matrix. Antibacterial tests show that the microstructure and volume fraction of copper-rich phases are the key factors affecting the antibacterial properties of the materials. ε-Cu displays the best antibacterial effect, followed by metastable copper-rich phase, solid solution copper is the worst. The more ε-Cu phases are, the more antibacterial effect is.
Key words:  antibacterial treatment temperature      copper-containing duplex stainless steel      corrosion resistance      antibacterial property      copper-rich phase     
Received:  06 April 2012     
Fund: 

Supported by Program for New Century Excellent Talents in University of Fujian Province (No.JA10014)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00178     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1089

[1] Suzuki S, Nakamura S, Ookubo N, Hasegawa M, Miyakuso K. CAMP–ISIJ, 1999; 12: 518

[2] Chen S H, L¨u M Q, Zhang J D, Dong J S, Yang K. Acta Metall Sin, 2004; 40: 314

(陈四红, 吕曼祺, 张敬党, 董加胜, 杨 柯. 金属学报, 2004; 40: 314)

[3] Nan L, Liu Y Q, Yang W C, Xu H, Li Y, Lu M Q, Yang K. Acta Metall Sin, 2007; 43: 1065

(南黎, 刘永前, 杨伟超, 徐慧, 李瑛, 吕曼祺, 杨 柯. 金属学报, 2007; 43: 1065)

[4] Zhang Z X, Lin G, Xu Z. J Mater Process Technol, 2008; 205: 419

[5] Nan L, Yang K. J Mater Sci Technol, 2010; 26: 941

[6] Yang K, Dong J S, Chen S H, L¨u M Q. Chin J Mater Res, 2006; 20: 523

(杨 柯, 董加胜, 陈四红, 吕曼棋. 材料研究学报, 2006; 20: 523)

[7] Nan L, Yang W C, Liu Y Q, Xu H, Li Y, L¨u M Q, Yang K. J Mater Sci Technol, 2008; 24: 197

[8] Hong I T, Koo C H. Mater Sci Eng, 2005; A393: 213

[9] Wang X L, Zhao R D, Zhang W Q, Zhu H F. Spec Steel, 2006; 27(5): 35

(王小丽, 赵荣达, 张伟强, 朱宏飞. 特殊钢, 2006; 27(5): 35)

[10] Xiang H L, Fan J C, Liu D, Guo P P. Acta Metall Sin, 2012; 48: 1081

(向红亮, 范金春, 刘东, 郭培培. 金属学报, 2012; 48: 1081)

[11] Gong J, Jiang Y M, Deng B, Xu J L, Hu J P, Li J. Electroc Acta, 2010; 55: 5077

[12] Yang K, Lu M Q. J Mater Sci Technol, 2007; 23: 333

[13] Fu Y, Lin C J, Cai W D. Acta Metall Sin, 2005; 41: 302

(付 燕, 林昌健, 蔡文达. 金属学报, 2005; 41: 302)

[14] Jinil S, Sangshik K, Jehyun L, Byunghak C. Metall Mater Trans, 2003; 34A: 1617

[15] Sourisseau T, Chauveau E, Baroux B. Corros Sci, 2005; 47: 1097

[16] Banas J, Mazurkiewicz A. Mater Sci Eng, 2000; A277: 183

[17] Wei B M. The Theory of Metal Corrosion and Application. Beijing: Chemical Industry Press, 1984: 37

(魏宝明. 金属腐蚀理论及应用. 北京: 化学工业出版, 1984: 37)

[18] Trethewey K R, Paton M. Mater Lett, 2004; 58: 3381

[19] Lo I H, Fu Y, Lin C J, Tsai W T. Corros Sci, 2006; 48: 696

[20] Xiao J M. The Metallurgical Problems of Stainless Steels. Beijing: Metallurgy Industry Press, 2006: 164

(肖纪美. 不锈钢的金属学问题. 北京: 冶金工业出版社, 2006: 164)

[21] Zhang Z X, Lin G, Jiang L Z, Xu Z. Mater Chem Phys, 2008; 111: 238

[22] Ren H P, Liu Z C, An Z G, Wang H Y. Trans Mater Heat Treat, 2006; 27(4): 49

(任慧平, 刘宗昌, 安治国, 王海燕. 材料热处理学报, 2006; 27(4): 49)

[23] Ren H, Mao W. J Univ Sci Technol Beijing, 2002; 9(3): 185
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[3] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[4] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[5] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[6] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[7] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[8] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[9] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[10] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[11] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[12] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
[13] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[14] Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy[J]. 金属学报, 2017, 53(10): 1377-1384.
[15] Muqin LI, Haitao YAO, Fanghong WEI, Mingda LIU, Zan WANG, Shuhao PENG. The Microstructure and in Vivo and in Vitro Property of Multi-Component Composite Films on the Biomedical Pure Magnesium Surface[J]. 金属学报, 2017, 53(10): 1337-1346.
No Suggested Reading articles found!