Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (6): 905-910    DOI: 10.11900/0412.1961.2017.00399
Orginal Article Current Issue | Archive | Adv Search |
Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution
Haiou YANG1, Xuliang SHANG1, Lilin WANG2, Zhijun WANG1(), Jincheng WANG1, Xin LIN1
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Download:  HTML  PDF(2811KB) 
Export:  BibTeX | EndNote (RIS)      

High entropy alloys (HEAs) origin from a new alloy design concept with multi-principal elements, which have attracted significant interests in the past decade. The high configurational entropy in HEAs results in simple solid solutions with fcc and bcc structures. Especially, the single solid solution CoCrFeNi alloy exhibits excellent properties in many aspects, such as mechanical properties, thermal stability, radiation resistance and corrosion resistance. The excellent corrosion resistance of CoCrFeNi alloy is ascribed to the single-phase structure and uniform element distribution coupled with much higher Cr content than stainless steel. The single-phase structure and uniform element distribution can prevent the occurrence of localized corrosion, and higher Cr content can protect the alloy surface better with the form of oxidation film. Moreover, the corrosion resistance of CoCrFeNi-based HEAs, such as CoCrFeNiAlx, CoCrFeNiCux, CoCrFeNiTix, have also been extensively investigated. In most CoCrFeNi-based HEAs, the elements of Co, Cr, Fe and Ni are with equal-atomic ratio. However, the equal-atomic ratio is not necessary to obtain satisfactory properties and to ensure the single fcc structure in Co-Cr-Fe-Ni system. Accordingly, it is essential to further consider the effect of alloying elements on the corrosion resistance in Co-Cr-Fe-Ni HEA. In this work, the effect of Co, Fe and Ni elements on the corrosion resistance of single fcc Co-Cr-Fe-Ni system with concentrated constitution but different atomic ratios in 3.5%NaCl solution are investigated by using LSCM and EIS. The potentiodynamic polarization results indicate that the increase of Fe and the decrease of Ni will decrease the passivation current density of the alloys when the Co and Cr contents are equal. With the increase of Co and the decrease of Ni, the alloys show smaller passivation current density and better corrosion resistance when the Fe and Cr contents are equal. With the decrease of Co and the increase of Fe and Ni, the alloys show higher corrosion potential and smaller corrosion tendency when the Cr content is constant. These results will be helpful for the design of corrosion resistant HEAs in NaCl aqueous solution.

Key words:  high-entropy alloy      CoCrFeNi      corrosion resistance      element content     
Received:  22 September 2017     
ZTFLH:  TG178  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0700300) and National Natural Science Foundation of China (Nos.51471133 and 51771149)

Cite this article: 

Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution. Acta Metall Sin, 2018, 54(6): 905-910.

URL:     OR

Fig.1  Potentiodynamic polarization curves of CoaCr20FebNi80-a-b system in 3.5%NaCl solution (a) and the local magnification of Fig.1a (b)
No. Alloy Eb / mV ip / (μAcm-2) Ecorr / mV icorr / (μAcm-2)
1 Co20Cr20Fe20Ni40 998 8.67 19 0.50
2 Co20Cr20Fe30Ni30 992 2.32 113 1.65
3 Co20Cr20Fe40Ni20 1009 1.95 -76 0.03
4 Co26.67Cr20Fe26.67Ni26.66 952 4.72 77 1.78
5 Co30Cr20Fe20Ni30 980 3.20 72 2.22
6 Co30Cr20Fe30Ni20 970 2.01 12 2.32
7 Co40Cr20Fe20Ni20 987 3.13 33 0.61
Table 1  The electrochemical parameters of CoaCr20FebNi80-a-b system in 3.5%NaCl solution
Fig.2  Surface LSCM images corresponding to alloys 1~7 respectively (a~g) and three-dimensional image for Fig.2g (h) of CoaCr20FebNi80-a-b system after polarization in 3.5%NaCl solution
Fig.3  Nyquist plots with (a) and without (b) alloy 3 and Bode plot (c) of CoaCr20FebNi80-a-b system in 3.5%NaCl solution
Co content Alloy ip / (μAcm-2)
20% Co20Cr20Ni40Fe20 8.67
Co20Cr20Ni30Fe30 2.32
Co20Cr20Ni20Fe40 1.95
30% Co30Cr20Ni30Fe20 3.20
Co30Cr20Ni20Fe30 2.01
Table 2  Effect of Ni and Fe contents on the corrosion resistance of CoaCr20FebNi80-a-b with 20% and 30% Co condents
Fe content Alloy ip / (μAcm-2)
20% Co20Cr20Fe20Ni40 8.67
Co30Cr20Fe20Ni30 3.20
Co40Cr20Fe20Ni20 3.13
30% Co20Cr20Fe30Ni30 2.32
Co30Cr20Fe30Ni20 2.01
Table 3  Effect of Co and Ni contents on the corrosion resistance of CoaCr20FebNi80-a-b with 20% and 30% Fe contents
[1] Zhang Y, Zuo T T, Tang Z, et al.Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
[2] Murty B S, Yeh J W, Ranganathan S.High-Entropy Alloys[M]. London: Butterworth-Heinemann, 2014: 1
[3] Yeh J W, Chen S K, Lin S J, et al.Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
[4] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
[5] Sohn S, Liu Y H, Liu J B, et al.Noble metal high entropy alloys[J]. Scr. Mater., 2017, 126: 29
[6] Tsai M H, Yeh J W.High-entropy alloys: A critical review[J]. Mater. Lett., 2014, 2: 107
[7] Shi Y Z, Yang B, Liaw P K.Corrosion-resistant high-entropy alloys: A review[J]. Metals, 2017, 7: 43
[8] Xiang C, Wang J Z, Fu H M, et al.Corrosion behavior of several high-entropy alloys in high temperature high pressure water[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107(向超, 王家贞, 付华萌等. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 107)
[9] Tang Z, Huang L, He W, et al.Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys[J]. Entropy, 2014, 16: 895
[10] Kozak R, Sologubenko A, Steurer W.Single-phase high-entropy alloys—An overview[J]. Z. Kristallogr., 2015, 230: 55
[11] Qiu Y, Thomas S, Gibson M A, et al.Corrosion of high entropy alloys[J]. NPJ Mater. Degrad., 2017, 1: 15
[12] Wu Z, Bei H, Otto F, et al.Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics, 2014, 46: 131
[13] Chen Y Y, Hong U T, Yeh J W, et al.Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 ℃ high-purity water[J]. Scr. Mater., 2006, 54: 1997
[14] Chen Y Y, Duval T, Hong U T, et al.Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 ℃ high-purity water[J]. Mater. Lett., 2007, 61: 2692
[15] Hsu Y J, Chiang W C, Wu J K.Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Mater. Chem. Phys., 2005, 92: 112
[16] Lin C M, Tsai H L.Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy[J]. Intermetallics, 2011, 19: 288
[17] Chou Y L, Yeh J W, Shih H C.Effect of molybdenum on the pitting resistance of Co1.5CrFeNi1.5Ti0.5Mox alloys in chloride solutions[J]. Corrosion, 2011, 67: 085002
[18] Cheng J B, Liang X B, Xu B S.Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings[J]. Surf. Coat. Technol., 2014, 240: 184
[19] Shang C Y, Axinte E, Sun J, et al.CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Mater. Des., 2017, 117: 193
[20] Qiu X W, Wu M J, Liu C G, et al.Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids[J]. J. Alloys Compd., 2017, 708: 353
[21] Wang P, Cai H N, Cheng X W.Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2-x (x=1.0, 1.2, 1.5, 1.8 mol) high entropy alloys[J]. J. Alloys Compd., 2016, 662: 20
[22] Chou Y L, Yeh J W, Shih H C.The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corros. Sci., 2010, 52: 2571
[23] Qiu X W, Liu C G.Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. J. Alloys Compd., 2013, 553: 216
[24] He F, Wang Z J, Wu Q F, et al.Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system[J]. Scr. Mater., 2017, 131: 42
[25] Shang X L, Wang Z J, He F, et al.The intrinsic mechanism of corrosion resistance for FCC high entropy alloys[J]. Sci. China Technol. Sci., 2018, 61: 189
[26] Hamdy A S, El-Shenawy E, El-Bitar T.Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl[J]. Int. J. Electrochem. Sci., 2006, 1: 171
[27] Kumar N, Fusco M, Komarasamy M, et al.Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy[J]. J. Nucl. Mater., 2017, 495: 154
[28] Shi Y Z, Yang B, Xie X, et al.Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corros. Sci., 2017, 119: 33
[29] Kocijan A, Milo?ev I, Pihlar B.Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis[J]. J. Mater. Sci.: Mater. Med., 2004, 15: 643
[30] Sekine I, Chinda A.Comparison of the corrosion behavior of pure Fe, Ni, Cr, and type 304 stainless steel in formic acid solution[J]. Corrosion, 1984, 40: 95
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[3] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[4] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[5] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[6] Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys[J]. 金属学报, 2018, 54(11): 1553-1566.
[7] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
[8] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[9] Muqin LI, Haitao YAO, Fanghong WEI, Mingda LIU, Zan WANG, Shuhao PENG. The Microstructure and in Vivo and in Vitro Property of Multi-Component Composite Films on the Biomedical Pure Magnesium Surface[J]. 金属学报, 2017, 53(10): 1337-1346.
[10] Chao XIA, Shi QIAN, Donghui WANG, Xuanyong LIU. Properties of Carbon Ion Implanted Biomedical Titanium[J]. 金属学报, 2017, 53(10): 1393-1401.
[11] Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy[J]. 金属学报, 2017, 53(10): 1377-1384.
[12] Wei XU,Xin LU,Yanxia DU,Qingyu MENG,Ming LI,Xuanhui QU. Corrosion Resistance of Ti-Fe Binary Alloys Fabricated by Powder Metallurgy[J]. 金属学报, 2017, 53(1): 38-46.
No Suggested Reading articles found!