Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (7): 840-848    DOI: 10.11900/0412.1961.2018.00558
Current Issue | Archive | Adv Search |
Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution
Lin WEI1,Zhijun WANG1(),Qingfeng WU1,Xuliang SHANG2,Junjie LI1,Jincheng WANG1
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
2. Citic Daika Co. , Ltd. , Qinhuangdao 066011, China
Cite this article: 

Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution. Acta Metall Sin, 2019, 55(7): 840-848.

Download:  HTML  PDF(15275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a new alloy design concept, the high-entropy alloy (HEA) and the formation of simple solid solution introduce excellent properties such as high hardness, high strength and corrosion resistance. Investigations have shown that the single solid solution CrCoFeNi alloy possesses good corrosion resistance. The addition of Mo is beneficial to the corrosion resistance of the HEAs for potential industrial applications in 3.5%NaCl (mass fraction) simulating seawater type environments. The major effect of Mo is to promote the pitting potential of the alloy and inhibit the dissolution of the passivation film by forming and retaining molybdenum oxyhydroxide or molybdates (MoO42-). Considering that the cost of pure Co is higher, Ni and Co elements have similar atomic size and valence electron concentration, and the corrosion resistance of pure Ni is higher than that of pure Co, Ni2CrFeMox HEA was designed by replacing Co element with Ni element in CoCrFeNiMox HEA. As the Mo content increases in the Ni2CrFeMox HEAs, the interdendrite is a Cr and Mo rich σ phase, and the dendrite is a Cr and Mo depleted fcc phase. The potential difference between interdendrites and dendrites leads to galvanic corrosion, which accelerates the localized corrosion of alloys. Here, a solution heat treatment process is selected to reduce the precipitation phase and improve the corrosion resistance of the alloy. The effects of Mo element and heat treatment on the corrosion resistance of Ni2CrFeMox HEA in 3.5%NaCl solution were tested. The results show that the corrosion resistance of as-cast Ni2CrFeMox HEA is obviously higher than that of 316L stainless steel. The Ni2CrFeMo0.2 alloy has the best corrosion resistance because of its minimum dimensional passive current density and corrosion current density. However, the addition of excessive Mo leads to the precipitation of σ phase and galvanic corrosion, which reduces the corrosion resistance of the alloy. After solution treatment, the uniformity of alloy structure and element distribution weakens galvanic corrosion, and the corrosion resistance is obviously improved.

Key words:  Mo element      high entropy alloy      solution treatment      corrosion resistance     
Received:  21 December 2018     
ZTFLH:  TG132  
Fund: National Natural Science Foundation of China(Nos.51471133);National Natural Science Foundation of China(51771149)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00558     OR     https://www.ams.org.cn/EN/Y2019/V55/I7/840

Fig.1  Cyclic polarization curves of the as-cast Ni2Cr-FeMox alloys and 316L stainless steel in 3.5%NaCl solution (Eprot—protection potential, Eb—breakdown potential)
MaterialEcorr / mVicorr / (μA·cm-2)ipass / (μA·cm-2)Eb / mVEprot / mV
Ni2CrFeMo0.1-1352.13018.350986380
Ni2CrFeMo0.2-1790.8965.404920792
Ni2CrFeMo0.3-1031.95915.118896780
Ni2CrFeMo0.4-1211.71113.492954774
Ni2CrFeMo0.5-1252.01414.130966750
NiCoCrFeMo0.2[12]-1310.07216.000941747
316L-762.46322.135439-
Table 1  The electrochemical parameters of the as-cast Ni2CrFeMox alloys and 316L stainless steel in 3.5%NaCl solution
Fig.2  SEM images of the as-cast Ni2CrFeMox alloys with x=0.1 (a), x=0.2 (b), x=0.3 (c), x=0.4 (d), x=0.5 (e) and 316L stainless steel (f) polarized in 3.5%NaCl solution
Fig.3  Cyclic polarization curves of the heat treated Ni2CrFeMox alloys in 3.5%NaCl solution
MaterialEcorr / mVicorr / (μA·cm-2)ipass / (μA·cm-2)Eb / mVEprot / mVErp / mV
Ni2CrFeMo0.1-1470.8017.302915802401
Ni2CrFeMo0.2-1830.3261.612952785497
Ni2CrFeMo0.3-2121.7458.548945780628
Ni2CrFeMo0.4-2361.8079.152890763382
Ni2CrFeMo0.5-2221.3238.810870744367
Table 2  The electrochemical parameters of the heat treated Ni2CrFeMox alloys in 3.5%NaCl solution
Fig.4  SEM images of the heat treated Ni2CrFeMox alloys with x=0.1 (a), x=0.2 (b), x=0.3 (c), x=0.4 (d), x=0.5 (e) polarized in 3.5%NaCl solution
Fig.5  EDS maps of as-cast (a) and heat treated (b) Ni2FeCrMo0.2 alloy (unpolarized)
Fig.6  Nyquist plots (a) and Bode plots (b) of as-cast Ni2FeCrMox alloys in 3.5%NaCl solution
Fig.7  Nyquist plots (a) and Bode plots (b) of as-cast and heat-treated Ni2FeCrMo0.2 alloys in 3.5%NaCl solution
Fig.8  XPS spectra of as-cast (a1~a4) and heat-treated (b1~b4) Ni2CrFeMo0.2 alloy in 3.5%NaCl solution after constant potential+450 mV (vs SHE) polarization for 4 h
ConditionCr(+3)/(0)Fe(+3)/(0)Mo(+6)/(+4)/(0)Ni(+2)/(0)
As-cast14.465.4661.29∶15.54∶23.170.46
Heat-treated17.991.5267.5∶15.18∶17.321.01
Table 3  Atomic ratio between different oxidation states of each element in as-cast and heat-treated Ni2CrFeMo0.2 alloy after XPS analysis
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[2] Hsu Y J, Chiang W C, Wu J K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution [J]. Mater. Chem. Phys., 2005, 92: 112
[3] Yang H O, Shang X L, Wang L L, et al. Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
[3] (杨海欧, 尚旭亮, 王理林等. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响 [J]. 金属学报, 2018, 54: 905)
[4] Wang D. Structure and mechanical properties of CoCrFeNiCu high-entropy alloys [D]. Shenyang: Shenyang University of Technology, 2014
[4] (王 夺. CoCrFeNiCu系高熵合金的组织和力学性能 [D]. 沈阳: 沈阳理工大学, 2014)
[5] Yang T F, Xia S Q, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2015, A648: 15
[6] Shun T T, Chang L Y, Shiu M H. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys [J]. Mater. Charact., 2012, 70: 63
[7] Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids [J]. Corros. Sci., 2010, 52: 1026
[8] Rodriguez A A, Tylczak J H, Gao M C, et al. Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions [J]. Adv. Mater. Sci. Eng., 2018, 2018: 3016304
[9] Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments [J]. Corros. Sci., 2010, 52: 2571
[10] Shang X L, Wang Z J, Wu Q F, et al. Effect of Mo addition on corrosion behavior of high-entropy alloys CoCrFeNiMox in aqueous environments [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 41
[11] Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
[12] Hayes J R, Gray J J, Szmodis A W, et al. Influence of chromium and molybdenum on the corrosion of nickel-based alloys [J]. Corrosion, 2006, 62: 491
[13] Shi Y Z. Microstructures and corrosion-resistant properties of AlxCoCrFeNi high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
[13] (石芸竹. AlxCoCrFeNi系高熵合金微观组织与耐蚀性能研究 [D]. 北京: 北京科技大学, 2018)
[14] Shao F X, Zhao R F, Wang X L, et al. Corrosion resistance of CrxCuFe2Mo0.5Nb0.5Ni2 high-entropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 1092
[14] (邵凤翔, 赵瑞锋, 王新莉等. CrxCuFe2Mo0.5Nb0.5Ni2高熵合金的耐蚀性能 [J]. 特种铸造及有色合金, 2016, 36: 1092)
[15] Wen X, Jin G, Pang X J, et al. Effect of heat treatment on microstructure and corrosion resistance of NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering [J]. Mater. Rev., 2018, 31(12): 79
[15] (温 鑫, 金 国, 庞学佳等. 热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响 [J]. 材料导报, 2018, 31(12): 79)
[16] Lin C M, Tsai H L, Bor H Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy [J]. Intermetallics, 2010, 18: 1244
[17] Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy [J]. Intermetallics, 2011, 19: 288
[18] He F, Wang Z J, Zhu M, et al. The phase stability of Ni2CrFeMoxmulti-principal-component alloys with medium configurational entropy [J]. Mater. Des., 2015, 85: 1
[19] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions [M]. Houston, Texas: National Association of Corrosion Engineers, 1974: 307
[20] Simmons J W. Overview: High-nitrogen alloying of stainless steels [J]. Mater. Sci. Eng., 1996, A207: 159
[21] Nilsson J O. Super duplex stainless steels [J]. Mater. Sci. Technol., 1992, 8: 685
[22] Wilde B E. A critical appraisal of some popular laboratory electrochemical tests for predicting the localized corrosion resistance of stainless alloys in sea water [J]. Corrosion, 1972, 28: 283
[23] Liu L, Li Y, Wang F H. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5%NaCl [J]. Electrochim. Acta, 2007, 52: 7193
[24] Shi Y Z, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
[25] Allen G C, Tucker P M, Wild R K. X-ray photoelectron/auger electron spectroscopic study of the initial oxidation of chromium metal [J]. J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys., 1978, 74: 1126
[26] Leiro J A, Minni E E. The XPS valence band of chromium [J]. Philos. Mag., 1984, 49B: L61
[27] Myers C E, Franzen H F, Anderegg J W. X-ray photoelectron spectra and bonding in transition-metal phosphides [J]. Inorg. Chem., 1985, 24: 1822.
[28] Nefedov V I, Salyn Y V, Leonhardt G, et al. A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy [J]. J. Electron. Spectrosc. Relat. Phenom., 1977, 10: 121
[29] Li C P, Proctor A, Hercules D M. Curve fitting analysis of ESCA Ni 2p spectra of nickel-oxygen compounds and Ni/Al2O3 catalysts [J]. Appl. Spectrosc., 1984, 38: 880
[30] Zingg D S, Makovsky L E, Tischer R E, et al. A surface spectroscopic study of molybdenum-alumina catalysts using X-ray photoelectron, ion-scattering, and Raman spectroscopies [J]. J. Phys. Chem., 1980, 84: 2898
[31] de Vries J E, Yao H C, Baird R J, et al. Characterization of molybdenum-platinum catalysts supported on γ-alumina by X-ray photoelectron spectroscopy [J]. J. Catal., 1983, 84: 8
[32] Cimino A, De Angelis B A. The application of X-ray photoelectron spectroscopy to the study of molybdenum oxides and supported molybdenum oxide catalysts [J]. J. Catal., 1975, 36: 11
[33] Li P, Pang S J, Zhao J, et al. Corrosion behavior of CoCrFeNiTi0.5 high entropy alloy in molten Na2SO4-25%NaCl [J]. Chin. J. Nonferrous Met., 2015, 25: 367
[33] (李 萍, 庞胜娇, 赵 杰等. CoCrFeNiTi0.5高熵合金在熔融Na2SO4-25%NaCl中的腐蚀行为 [J]. 中国有色金属学报, 2015, 25: 367)
[34] Sugimoto K, Sawada Y. The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions [J]. Corros. Sci., 1977, 17: 425
[35] Sugimoto K, Sawada Y. The role of alloyed molybdenum in austenitic stainless steels in the inhibition of pitting in neutral halide solutions [J]. Corrosion, 1976, 32: 347
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[3] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[4] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[5] YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 393-402.
[6] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[8] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[11] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[12] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[13] LIU Yi, TU Jian, YANG Weihua, YIN Ruisen, TAN Li, HUANG Can, ZHOU Zhiming. Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy[J]. 金属学报, 2020, 56(12): 1569-1580.
[14] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[15] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
No Suggested Reading articles found!