Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1081-1088    DOI: 10.3724/SP.J.1037.2012.00177
论文 Current Issue | Archive | Adv Search |
EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase
XIANG Hongliang, FAN Jinchun, LIU Dong, GUO Peipei
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
Cite this article: 

XIANG Hongliang FAN Jinchun LIU Dong GUO Peipei. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase. Acta Metall Sin, 2012, 48(9): 1081-1088.

Download:  PDF(4825KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Nowadays, the events of bacterial infection are increasingly arising. It is urgent to develop new antibacterial material to fight against the bacteria having resistance to drug. Because the antibacterial stainless steels have both antibacterial property and other excellent combination ones, their development has been obtained rapidly. At present, the copper-containing antibacterial stainless steels are the research focus. It has been reached that the antibacterial effect of those materials is due to the copper-rich phases precipitated from the matrix by aging treatment. Most of studies were performed at single-phase stainless steels, but rarely at duplex stainless steels. It is necessary to study the precipitation process of copper-rich phases in duplex stainless steels for the development of antibacterial duplex stainless steels. In this work, the microstructure and precipitating evolution law of copper-rich phases in the copper-containing duplex stainless steels during antibacterial aging treatment has been analyzed in detail by SEM, XRD and TEM. The results indicate that antibacterial copper-rich phases are precipitated from ferrite and α/γ interfaces, no precipitation in austenite when the duplex stainless steels are aged at temperature ranging from 540 to 580 ℃. The technique parameters of the aging treatment have important effect on the volume fraction and morphologies of precipitated phase. With aging time increasing, the precipitates coarsen, and their morphologies gradually change from spherical particle to rod-like or long-stripe-like grain. When the aging temperature is raised, precipitation speed of copper-rich phases accelerates and they make the change like before. At the same time,  the copper-rich phases gradually turn from metastable state to steady ε-Cu phase with the composition close to pure copper, which has complicated multilayer structure with twisting layers. The Kurdjumov--Sachs orientation relationships between ε-Cu phases and the ferrite matrix followed: (111)ε-Cu//(110)α-Fe, [011]ε-Cu//[001]α-Fe, (111)ε-Cu//(121)α-Fe, [011]ε-Cu//[012]α-Fe.
Key words:  copper-containing duplex stainless steel      antibacterial aging treatment      copper-rich phase      microstructure     
Received:  06 April 2012     
Fund: 

Supported by Program for New Century Excellent Talents in University of Fujian Province (No.JA10014)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00177     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1081

[1] Nakamura S, Suzuki S, Ookubo N, Hasegawa M, Miyakusu K. CAMP–ISIJ, 1998; 11: 1147

[2] Ookubo N, Nakamura S, Yamamoto M, Miyakusu K, Hasegawa M. Nisshin Steel Rep Jpn, 1998; 77: 69

[3] Toyokihara C, Nakamura S, Suzuki S, Miyakusu K, Ookubo S, Hasegawa M. CAMP–ISIJ, 1999; 12: 1179

[4] Chen S H, L¨u M Q, Zhang J D, Dong J S, Yang K. Acta Metall Sin, 2004; 40: 314

(陈四红, 吕曼祺, 张敬党, 董加胜, 杨 柯. 金属学报, 2004; 40: 314)

[5] Hong I T, Koo C H. Mater Sci Eng, 2005; A393: 213

[6] Lu M Q, Chen S H, Dong J S, Yang K. Chin J Mater Res, 2005; 19: 581

(吕曼祺, 陈四红, 董加胜, 杨柯. 材料研究学报, 2005; 19: 581)

[7] Li H W, Zhang T B, Zhang T Y. Acta Metall Sin, 2008; 44: 39

(李恒武, 张体宝, 张体勇. 金属学报, 2008; 44: 39)

[8] Li N, Yang K. J Mater Sci Technol, 2010; 26: 941

[9] Robert N G. Duplex Stainless Steels: Microstructure, Properties and Applications. Cambridge: Woodhead Publish Ltd, 1997: 3

[10] Sun W S, Ding G R, Luo M W, Wang Z H, Song A Y. Acta Metall Sin, 1996; 32: 245

(孙文山, 丁桂荣, 罗铭蔚, 王智慧, 宋爱英. 金属学报, 1996; 32: 245)

[11] Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46: 304

(向红亮, 黄伟林, 刘东, 何福善. 金属学报, 2010; 46: 304)

[12] Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456

(向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)

[13] Xiang H L, Huang W L, Liu D, He F S, Ruan F R. Trans Mater Heat Treat, 2010; 31(12): 85

(向红亮, 黄伟林, 刘东, 何福善, 阮方如.材料热处理学报, 2010; 31(12): 85)

[14] Martins M, Roossitti S M, Ritoni M. Mater Charact, 2007; 58: 909

[15] Russell S W, Lundin C D. Final Report for the Development of Qualification Standards for Cast Duplex Stainless Steel. Vol.2, Knoxville: University of Tennessee, 2005: 14

[16] Jacek B, Andrzej M. Mater Sci Eng, 2000; A277: 183

[17] Hughes D D. Mater Sci Eng, 1993; A168: 35

[18] Dhua S K, Mukerjee D, Sarma D S. Metall Mater Trans, 2001; 32A: 2259

[19] Murayama M, Hono K, Katayama Y. Metall Mater Trans, 1999; 30A: 345

[20] Zhang Z X, Lin G, Xu Z. Chin J Mater Res, 2008; 29: 93

(张志霞, 林 刚, 徐 洲. 材料研究学报, 2008; 29: 93)

[21] Aaronson H I, Lee J K. In: Aaronson H I ed., Lectures on the Theory of Phase Transformations. Warrendale: TMS–AIME, 1975: 83

[22] Zhang Z X, Lin G, Xu Z. J Mater Sci Technol, 2008; 24: 775

[23] Kolli R P, Seidman D N. Acta Mater, 2008; 56: 2073
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!