Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (5): 651-664    DOI: 10.11900/0412.1961.2020.00131
Research paper Current Issue | Archive | Adv Search |
Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates
HUANG Yichuan1, WANG Qing1, ZHANG Shuang2, DONG Chuang1,2(), WU Aimin1, LIN Guoqiang1
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
2.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Cite this article: 

HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates. Acta Metall Sin, 2021, 57(5): 651-664.

Download:  HTML  PDF(9429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

316 stainless steel is the first choice for bipolar plate material in fuel cells; however, it suffers from passivation-induced corrosion and conductivity deficiencies. In this work, Fe-Cr-Ni alloy was refined using the cluster-plus-glue-atom model to obtain stainless steels with balanced corrosion and electrical performances. For austenite 316L stainless steel, the unit is described as a 16-atom cluster formula [Ni-Fe11Ni1]Cr3. By fixing the three atoms of a glue, Cr3 is required to achieve sufficient corrosion resistance, and new compositions with varying Ni contents are designed following [Ni-Fe13-xNix-1]Cr3 = Fe13-xNixCr3 (x = 1-5). The designed alloys were arc melted at least five times, copper-mold suction casted into 10-mm cylindrical rods under an argon atmosphere, homogenized at 1150oC for 2 h, and water quenched. Under the simulated bipolar plate service environment (0.5 mol/L H2SO4 + 2 × 10-6 HF aqueous solution), as the Ni content increases, the self-corrosion current density decreases to 1.10 and 0.29 μA/cm2 after acid passivation and electrochemical nitridation, respectively. These values are well below compared to the commercial 316L stainless steel (7.51 and 0.47 μA/cm2) and close to the current industry target (0.5 μA/cm2) for bipolar plates. At the same time, the contact electrical resistance (under 0.064 MPa pressure) decreases to 0.98 and 1.03 Ω·cm2 after acid passivation and electrochemical nitridation, respectively, which is superior to the 316L stainless steel (1.1 Ω·cm2). Thus, optimal alloy composition [Ni-Fe10Ni2]Cr3 can be used as the right substrate material of the bipolar plate instead of the 316L stainless steel. The electrochemical nitridation method is the proper surface treatment method for stainless steel bipolar plates, and this method improves the alloy's corrosion resistance while maintaining the same level of contact resistance.

Key words:  stainless steel      bipolar plate      acid passivation      electrochemical nitridation      corrosion resistance      interfacial contact resistance      passivation film     
Received:  27 April 2020     
ZTFLH:  TM911.4  
Fund: National Key Research and Development Program of China(2016YFB0701401)
About author:  DONG Chuang, professor, Tel: (0411)84707930-11, E-mail: dong@dlut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00131     OR     https://www.ams.org.cn/EN/Y2021/V57/I5/651

Fig.1  Cuboctahedral cluster in austenite
Cluster formulaAtomic formulaNominal compositionMeasured compositionNieqCreq
[Ni-Fe12]Cr3Fe12Ni12Cr3Fe-6.63Ni-17.63CrFe-6.74Ni-17.65Cr6.6317.63
[Ni-Fe11.5Ni0.5]Cr3Fe11.5Ni1.5Cr3Fe-9.93Ni-17.6CrFe-10.05Ni-17.68Cr9.9317.60
[Ni-Fe11Ni]Cr3Fe11Ni2Cr3Fe-13.22Ni-17.57CrFe-13.46Ni-17.74Cr13.2217.57
[Ni-Fe10.5Ni1.5]Cr3Fe10.5Ni2.5Cr3Fe-16.5Ni-17.54CrFe-16.73Ni-17.73Cr16.5017.54
[Ni-Fe10Ni2]Cr3Fe10Ni3Cr3Fe-19.77Ni-17.52CrFe-20.03Ni-17.73Cr19.7717.52
[Ni-Fe9Ni3]Cr3Fe9Ni4Cr3Fe-26.28Ni-17.46CrFe-26.50Ni-17.70Cr26.2817.46
[Ni-Fe8Ni4]Cr3Fe8Ni5Cr3Fe-32.74Ni-17.40CrFe-32.87Ni-17.69Cr32.7417.40
[Ni-Fe11Ni1]-Fe11Ni2Cr2.8Mo0.2Fe-14Ni-16.8Cr-2.3MoFe-12.59Ni-17.43Cr-2.00Mo-15.9019.58
Mo0.2Cr2.9 (316L)1.15Mn-0.03Cu-0.01S-0.02P-0.52Si(including(including
C, Mn)Mo, Si)
Table 1  Fe-Cr-Ni alloys designed using the cluster [Ni-Fe13-xNix-1]Cr3, together with the composition and cluster formula of the reference 316L alloy
Fig.2  Designed alloys and 316L in Schaeffler diagram (A—austenite, F—ferrite, M—martensite; (M)—mass fraction of element M)
Fig.3  XRD spectra of the designed alloys after solution (1150oC, 2 h) and water-quenching treatment
Fig.4  OM images of the designed alloys after solution and water-quenching treatment
Fig.5  Hardness of the the designed alloy and reference alloy (316L stainless steel) vs their Ni equivalents
Fig.6  Open circuit potential (Eocp)-time (t) curves of the designed and reference alloys before and after passivation treatment
Fig.7  Dynamic potential polarization curves of the designed and reference alloys before (a) and after (b) acid passivation treatment in 0.5 mol/L H2SO4 + 2 × 10-6 HF aqueous solution (i—corrosion current density, E—potential)
ClusterBefore passivationAfter passivation
Ecorr / mVicorr / (μA·cm-2)Ecorr / mVicorr / (μA·cm-2)
[Ni-Fe12]Cr3-456.64138.15-287.1814.39
[Ni-Fe11.5Ni0.5]Cr3-392.75166.39-251.0410.59
[Ni-Fe11Ni]Cr3-303.94129.03-228.727.16
[Ni-Fe10.5Ni1.5]Cr3-270.71109.26-227.144.09
[Ni-Fe10Ni2]Cr3-265.21130.25-224.981.68
[Ni-Fe9Ni3]Cr3-262.08111.49-227.632.22
[Ni-Fe8Ni4]Cr3-230.2675.60-219.291.10
[Ni-Fe11Ni1] Mo0.2Cr2.9(316L)-291.0778.28-264.477.51
Table 2  Self-corrosion potential (Ecorr) and self-corrosion current density (icorr) of the designed and reference alloys before and after the acid passivation
Fig.8  Ecorr and icorr of the designed and reference alloys after passivation vs their Ni equivalents
Fig.9  Mott-Schottky curves of the designed and reference alloys after acid passivation (Csc—space-charge capacitance)
Fig.10  Carrier concentrations of the designed and reference alloys after acid passivation vs their Ni equivalents (Nd—donor density, Na—acceptor density)
Cluster

②: Nd

1023 cm-3

③: Na

1023 cm-3

[Ni-Fe12]Cr30.910.90
[Ni-Fe11.5Ni0.5]Cr32.381.86
[Ni-Fe11Ni]Cr32.471.96
[Ni-Fe10.5Ni1.5]Cr32.502.07
[Ni-Fe10Ni2]Cr32.542.15
[Ni-Fe9Ni3]Cr32.592.21
[Ni-Fe8Ni4]Cr32.692.23
[Ni-Fe11Ni1] Mo0.2Cr2.9 (316L)0.780.85
Table 3  Carrier concentrations of the designed alloys after acid passivation, with Nd and Na fitted from zones ② and ③ in Fig.9, respectively
Clusterδsc / 10-6 cm
[Ni-Fe12]Cr32.86
[Ni-Fe11.5Ni0.5]Cr31.95
[Ni-Fe11Ni]Cr31.83
[Ni-Fe10.5Ni1.5]Cr31.79
[Ni-Fe10Ni2]Cr31.77
[Ni-Fe9Ni3]Cr31.75
[Ni-Fe8Ni4]Cr31.75
[Ni-Fe11Ni1] Mo0.2Cr2.9(316L)2.89
Table 4  Space charge layer thickness (δsc) of the designed and reference alloys after acid passivation
Fig.11  Open circuit potential-time curves of the designed and reference alloys before and after electrochemical nitridation
Fig.12  Dynamic potential polarization curves of the designed and reference alloys before (a) and after (b) electrochemical nitridation in 0.5 mol/L H2SO4 + 2 × 10-6 HF aqueous solution
ClusterBefore passivationAfter passivation
Ecorr / mVicorr / (μA·cm-2)Ecorr / mVicorr / (μA·cm-2)
[Ni-Fe12]Cr3-456.64138.15-273.801.03
[Ni-Fe11.5Ni0.5]Cr3-392.75166.391.590.48
[Ni-Fe11Ni]Cr3-303.94129.0330.770.48
[Ni-Fe10.5Ni1.5]Cr3-270.71109.2642.170.45
[Ni-Fe10Ni2]Cr3-265.21130.2592.220.43
[Ni-Fe9Ni3]Cr3-262.08111.4978.410.28
[Ni-Fe8Ni4]Cr3-230.2675.60134.230.29
[Ni-Fe11Ni1] Mo0.2Cr2.9 (316L)-291.0778.2819.000.47
Table 5  Ecorr and icorr of the designed and reference alloys before and after electrochemical nitridation
Fig.13  Ecorr and icorr of alloys after electrochemical nitridation vs their Ni equivalents
Fig.14  Mott-Schottky curves of alloys after electrochemical nitridation
Cluster

②: Nd

1021 cm-3

③: Na

1021 cm-3

[Ni-Fe12]Cr30.941.02
[Ni-Fe11.5Ni0.5]Cr31.001.08
[Ni-Fe11Ni]Cr31.011.08
[Ni-Fe10.5Ni1.5]Cr31.051.05
[Ni-Fe10Ni2]Cr31.031.18
[Ni-Fe9Ni3]Cr31.051.13
[Ni-Fe8Ni4]Cr31.251.37
[Ni-Fe11Ni1] Mo0.2Cr2.9 (316L)1.031.16
Table 6  Carrier concentrations of the designed alloys after electrochemical nitridation
Clusterδsc / 10-6 cm
[Ni-Fe12]Cr39.26
[Ni-Fe11.5Ni0.5]Cr39.13
[Ni-Fe11Ni]Cr39.06
[Ni-Fe10.5Ni1.5]Cr39.03
[Ni-Fe10Ni2]Cr38.96
[Ni-Fe9Ni3]Cr38.77
[Ni-Fe8Ni4]Cr38.05
[Ni-Fe11Ni1] Mo0.2Cr2.9(316L)8.91
Table 7  δsc of the designed and reference alloys after electrochemical nitridation
ClusterPassivation methodICR / (Ω·cm2) (0.064 MPa)
BeforeAfter
[Ni-Fe12]Cr3Acid passivation0.261.16
[Ni-Fe11.5Ni0.5]Cr3Acid passivation0.271.12
[Ni-Fe11Ni]Cr3Acid passivation0.411.10
[Ni-Fe10.5Ni1.5]Cr3Acid passivation0.461.04
Electrochemical nitriding0.461.07
[Ni-Fe10Ni2]Cr3Acid passivation0.510.99
Electrochemical nitriding0.511.03
[Ni-Fe9Ni3]Cr3Acid passivation0.490.98
[Ni-Fe8Ni4]Cr3Acid passivation0.500.98
Table 8  Interfacial contact resistance (ICR) of the designed and reference alloys after acid passivation and electrochemical nitridation
Fig.15  ICR of alloys after acid passivation vs their Ni equivalents
1 Huang N B, Yi B L, Hou M, et al. Review on thin metal bipolar plates for PEMFC [J]. Prog. Chem., 2005, 17: 963
黄乃宝, 衣宝廉, 侯 明等. PEMFC薄层金属双极板研究进展 [J]. 化学进展, 2005, 17: 963
2 Li J C, Wang Q, Jiang R, et al. Research progress of bipolar plate material for proton exchange membrane fuel cells [J]. Mater. Rev., 2018, 32: 2584
李俊超, 王 清, 蒋 锐等. 质子交换膜燃料电池双极板材料研究进展 [J]. 材料导报, 2018, 32: 2584
3 Wang H, Turner J A. Reviewing metallic PEMFC bipolar plates [J]. Fuel Cells, 2010, 10: 510
4 Yang L J, Wei H J, Zhu L, et al. Present research state and prospects for bipolar plates of proton exchange membrane fuel cells [J]. Met. Funct. Mater., 2009, 16(5): 50
杨丽军, 尉海军, 朱 磊等. 质子交换膜燃料电池双极板的研究现状及展望 [J]. 金属功能材料, 2009, 16(5): 50
5 Matsuura T, Kato M, Hori M. Study on metallic bipolar plate for proton exchange membrane fuel cell [J]. J. Power Sources, 2006, 161: 74
6 Wang H L, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2003, 115: 243
7 Jannat S, Rashtchi H, Atapour M, et al. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells [J]. J. Power Sources, 2019, 435: 226818
8 Hentall P L, Lakeman J B, Mepsted G O, et al. New materials for polymer electrolyte membrane fuel cell current collectors [J]. J. Power Sources, 1999, 80: 235
9 Wang S L, Hou M, Zhao Q, et al. Ti/(Ti, Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells [J]. J. Energy Chem., 2017, 26: 168
10 Wu A M, Hao K G, Wang M C, et al. Fuel cell metal bipolar plate surface modification material technology: From basic material research to application technology development [A]. Abstracts of TFC' National Symposium on Thin Film Technology [C]. Hefei, China Academic Journal Electronic Pubishing House, 2017: 68
吴爱民, 郝凯歌, 王明超等. 燃料电池金属双极板表面改性材料工艺技术: 从基础材料研究到应用技术开发 [A]. TFC’17全国薄膜技术学术研讨会论文摘要集 [C]. 合肥, 中国学术期刊电子杂志社, 2017: 68
11 Song Y, Zhang C, Ling C, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energy, 2020, 45: 29832
12 André J, Antoni L, Petit J P, et al. Electrical contact resistance between stainless steel bipolar plate and carbon felt in PEFC: A comprehensive study [J]. Int. J. Hydrogen Energy, 2009, 34: 3125
13 Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review [J]. Int. J. Hydrogen Energy, 2005, 30: 1297
14 Davies D P, Adcock P L, Turpin M, et al. Bipolar plate materials for solid polymer fuel cells [J]. J. Appl. Electrochem., 2000, 30: 101
15 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design [J]. Acta Metall. Sin., 2018, 54: 293
董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293
16 Jiang B B, Wang Q, Dong C. A cluster-formula composition design approach based on the local short-range order in solid solution structure [J]. Acta Phys. Sin., 2017, 66: 026102
姜贝贝, 王 清, 董 闯. 基于固溶体短程序结构的团簇式合金成分设计方法 [J]. 物理学报, 2017, 66: 026102
17 Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40D: R273
18 Li Z, Zhang R Q, Zha Q F, et al. Composition design of superhigh strength maraging stainless steels using a cluster model [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 35
19 Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Met. Prog., 1949, 56: 680
20 Wang Q, Zha Q F, Liu E X, et al. Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model [J]. Acta Metall. Sin., 2012, 48: 1201
王 清, 查钱锋, 刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计 [J]. 金属学报, 2012, 48: 1201
21 Lee S, Lee C Y, Lee Y K. Schaeffler diagram for high Mn steels [J]. J. Alloys Compd., 2015, 628: 46
22 Wang H L, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2003, 115: 243
23 Lizlovs E A, Bond A P. Anodic polarization of some ferritic stainless steels in chloride media [J]. J. Electrochem. Soc., 1969, 116: 574
24 Alves V A, Brett C M A. Characterisation of passive films formed on mild steels in bicarbonate solution by EIS [J]. Electrochim. Acta, 2002, 47: 2081
25 Chen H Y. Electrochemical nitridation of 316L stainless steel for PEMFC bipolar plates [D]. Tainan: National Cheng Kung University, 2013
陈澔瑜. 以电化学氮化法改质之316L不锈钢应用于PEMFC双极板 [D]. 台南: 成功大学, 2013
26 Dong Z H, Zhou T, Liu J, et al. Performance of surface chromizing layer on 316L stainless steel for proton exchange membrane fuel cell bipolar plates [J]. Int. J. Hydrogen Energy, 2019, 44: 22110
27 Zhang M, Wu B, Lin G Q, et al. Arc ion plated Cr/CrN/Cr multilayers on 316L stainless steel as bipolar plates for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2011, 196: 3249
28 Tian R J. Chromium nitride/Cr coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cell [J]. J. Power Sources, 2011, 196: 1258
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[5] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[6] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[7] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[8] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[9] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[10] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[11] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[14] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[15] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
No Suggested Reading articles found!