Key Laboratory of Biomaterials of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
Cite this article:
Muqin LI, Haitao YAO, Fanghong WEI, Mingda LIU, Zan WANG, Shuhao PENG. The Microstructure and in Vivo and in Vitro Property of Multi-Component Composite Films on the Biomedical Pure Magnesium Surface. Acta Metall Sin, 2017, 53(10): 1337-1346.
Entering into 21 Century,the degradable Mg and Mg alloy become research focus for the development of Internal fixation material from inert to active metal. The polybasic coating (UMAO-OH-SCA-SF) was prepared by ultrasound micro-arc oxidation (UMAO), alkali treatment (OH), treatment of silicohydride conversion coating (SCA) and the treatment of self-assembly silk fibroin on the surface of magnesium, which can improve the corrosion resistance and bioactivity of pure magnesium. The surface topography, structure, corrosion resistance, cell activity and bone growth in vivo of the coating were studied by SEM, IR spectra, electrochemical measurement, vitro experiment and implant test. The results show that the main phase of coating is MgO. The alkali treatment is beneficial to forming Si-O-Mg film by silicohydride coupling. With the self-assembly silk fibroin time increasing, the silk fibroin structure changes from random coil to β-fold. The polybasic coating self-corrosion is improved and self-corrosion current is reduced by two orders of magnitude. Compared to substrate, the polybasic coating has better proliferation, adherent and differentiation of osteoblast. It has a better bone integration capacity in the bone healing early stage, and which can control magnesium ion dissolving. The UMAO-OH-SCA-SF/1.5h coating has the best property.
Fig.1 Pure Mg screw implantation (a) and sampling on the mandible (b)
Fig.2 Surface and section SEM images of different coatings (a) UMAO (b) UMAO-OH-SCA-SF/0.5h (c) UMAO-OH-SCA-SF/1.0h (d) UMAO-OH-SCA-SF/1.5h
Fig.3 Element contents of the different coatings (a) UMAO (b) UMAO-OH-SCA-SF/0.5h (c) UMAO-OH-SCA-SF/1.0h (d) UMAO-OH-SCA-SF/1.5h
Fig.4 Infrared spectra of coatings with different treatment time
Fig.5 Contact angles of coatings with different treatment times (a) UMAO (b) UMAO-OH-SCA-SF/0.5h (c) UMAO-OH-SCA-SF/1.0h (d) UMAO-OH-SCA-SF/1.5h
Fig.6 Tafel polarization curves of coatings with different treatment times
Coating
Ecorr / V
icorr 10-5Acm-2
UMAO
-1.5540.10
211.38.2
UMAO-OH-SCA-SF/0.5h
-1.4820.11
6.5771.2
UMAO-OH-SCA-SF/1.0h
-1.4610.15
3.5950.91
UMAO-OH-SCA-SF/1.5h
-1.4470.10
2.1350.51
Table 1 Corrosion potential (Ecorr) and corrosion current density (icorr) of coatings with different treatment times in NaCl solution
Fig.7 Osteoblast proliferation by CCK8 testing (a) and activity ALP testing (b) of different coatings
Fig.8 Hematoxylin eosin (HE) staining of different coatings around the implantation of UMAO (a1~a3), UMAO-OH-SCA-SF/0.5h (b1~b3) and UMAO-OH-SCA-SF/1.5h (c1~c3) for 2 weeks (a1~c1), 4 weeks (a2~c2) and 6 weeks (a3~c3)
Fig.9 BMP-2 average gray level testing on the coatings of different implantation-bone osseointegration interface
Fig.10 variation concentrations of Mg2+ in the animal serum with implant of different coatings
Chen Y J, Xu Z G, Smith C, et al.Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomater., 2014, 10: 4561
[6]
Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[7]
Han X G, Zhu X P, Lei M K.Electrochemical properties of microarc oxidation films on a magnesium alloy modified by high-intensity pulsed ion beam[J]. Surf. Coat. Technol., 2011, 206: 874
[8]
Pan Y K, Chen C Z, Wang D G, et al.Influence of additives on microstructure and property of microarc oxidized Mg-Si-O coatings[J]. Ceram. Int., 2012, 38: 5527
[9]
Qu L J, Li M Q, Zhang E L, et al.Corrosion resistance of magnesium alloy coated by ultrasonic-micro arc oxidation in simulated body fluid[J]. Trans. Mater. Heat Treat., 2013, 34(3): 130(曲立杰, 李慕勤, 张二林等. 超声微弧氧化处理镁合金模拟体液中的耐蚀性[J]. 材料热处理学报, 2013, 34(3): 130)
[10]
Xu Y D, Chen Y B, Shi M, et al.Surface treatment application of silane on metals[J]. Met. Funct. Mater., 2011, 18(5): 66(许育东, 陈云帮, 石敏等. 金属表面硅烷化处理应用的研究[J]. 金属功能材料, 2011, 18(5): 66)
[11]
Palanivel V, Zhu D Q, van Ooij W J. Nanoparticle-filled silane films as chromate replacements for aluminum alloys[J]. Prog. Org. Coat., 2003, 47: 384
[12]
Hu J M, Liu L, Zhang J T, et al.Studies of surface treatment of aluminum alloys by BTSE silane agent[J]. Acta Metall. Sin., 2004, 40: 1189(胡吉明, 刘倞, 张金涛等. 铝合金表面BTSE硅烷化处理研究[J]. 金属学报, 2004, 40: 1189)
[13]
Zucchi F, Grassi V, Frignani A, et al.Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy[J]. Surf. Coat. Technol., 2006, 200: 4136
[14]
Zhang W, Sun Z F, Ding T, et al.Effect of silane treatment on corrosion resistance of AZ31 magnesium alloys[J]. J. Chongqing Inst. Technol.(Nat. Sci.), 2009, 23(9): 128(张微, 孙智富, 丁婷等. 硅烷处理对AZ31镁合金耐蚀性的影响[J]. 重庆工学院学报(自然科学版), 2009, 23(9): 128)
[15]
Zhou C Z, Confalonieri F, Medina N, et al.Fine organization of Bombyx mori fibroin heavy chain gene[J]. Nucleic Acids Res., 2000, 28: 2413
[16]
Tanaka K, Kajiyama N, Ishikura K, et al.Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori[J]. Biochim. Biophys. Acta, 1999, 1432: 92
[17]
Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar M A, et al.Enhanced mechanical properties of thermo sensitive chitosan hydrogel by silk fibers for cartilage tissue engineering[J]. Mater. Sci. Eng., 2013, C33: 4786
[18]
Zhu H L, Wu B W, Feng X X, et al.Preparation and characterization of bioactive mesoporous calcium silicate-silk fibroin composite films[J]. J. Biomed. Mater. Res., 2011, 98B: 330
[19]
Wang X Y, Kim H J, Xu P, et al.Biomaterial coatings by stepwise deposition of silk fibroin[J]. Langmuir, 2005, 21: 11335
[20]
Li M Q, Liu J, Ma C.Preparation method of magnesium surface ultrasonic micro-arc oxidation-HF-silane coupling agent multistage compound bioactive coating [P]. Chin Pat, 201310537474.5, 2014(李慕勤, 刘江, 马臣. 镁表面超声微弧氧化-HF-硅烷偶联剂多级复合生物活性涂层制备方法 [P]. 中国专利, 201310537474.5, 2014)
[21]
Li M Q, Ma C, Zhang A Q.Preparation method of ultrasonic microarc oxidation silver-carrying antibiotic bioactive coating on magnesium and titanium surface [P]. Chin Pat, 200910072105.7, 2010(李慕勤, 马臣, 张爱琴. 镁、钛表面超声微弧氧化载银抗菌生物活性涂层制备方法 [P]. 中国专利, 2009100721057.7, 2010)
[22]
Gao J C, Li L C, Wang Y, et al.Corrosion resistance of alkali heat treated magnesium in bionics simulated body fluid[J]. Trans. Mater. Heat Treat., 2005, 30(4): 38(高家诚, 李龙川, 王勇等. 碱热处理镁及其在仿生模拟体液中耐蚀性能[J]. 金属热处理, 2005, 30(4): 38)
[23]
Correa P S, Malfatti C F, Azambuja D S.Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxy silane doped with cerium ions[J]. Prog. Org. Coat., 2011, 72: 739
[24]
Wu H J, Lu J T.Characterization and formation of silane film on hot-dipped galvanized steel sheet[J]. Mater. Prot., 2009, 42(5): 7(吴海江, 卢锦堂. 热镀锌钢表面硅烷膜的制备、表征及成膜机理[J]. 材料保护, 2009, 42(5): 7)
[25]
Fang X X, Cao Y B, Liang W, et al.Conventional treatment technology and silanization technology for the surface of magnesium alloy[J]. J. Chongqing Inst. Technol.(Nat. Sci.), 2010, 12(2): 123(方欣欣, 曹岳斌, 梁伟等. 镁合金表面常规处理与硅烷化处理技术[J]. 重庆科技学院学报(自然科学版), 2010, 12(2): 123)
[26]
Shi P J, Goh J C H. Self-assembled silk fibroin particles: Tunable size and appearance [J]. Powder Technol., 2012, 215-216: 85
[27]
Cheng C, Shao Z Z, Vollrath F.Silk fibroin-regulated crystallization of calcium carbonate[J]. Adv. Funct. Mater., 2008, 18: 2172
[28]
Hu D D, Yang M Y, Zhu L J.Influence of silk fibroin-based biomaterials on cell behaviors[J]. Bull. Seric., 2016, 47(1): 6(胡豆豆, 杨明英, 朱良均. 丝素蛋白生物材料对细胞行为的影响[J]. 蚕桑通报, 2016, 47(1): 6)
[29]
Marolt D, Augst A, Freed L E, et al.Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors[J]. Biomaterials, 2006, 27: 6138
[30]
Yang Y M, Ding F, Wu J, et al.Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration[J]. Biomaterials, 2007, 28: 5526
[31]
Hein J, Hartmann K.Reference ranges for laboratory parameters in rabbits[J]. Tier?rztl. Praxis Kleint., 2003, (5): 321
[32]
Yang L, Chen Y, Zhu L J, et al.In vivo degradation test of a novel silk fibroin scaffold[J]. Bull. Seric., 2011, 37: 713(杨磊, 陈宇, 朱良均等. 一种新型丝素支架材料的体内降解试验[J]. 蚕桑通报, 2011, 37: 713)