Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1377-1384    DOI: 10.11900/0412.1961.2017.00267
Orginal Article Current Issue | Archive | Adv Search |
Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy
Cong PENG1,2, Shuyuan ZHANG1, Ling REN1(), Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy. Acta Metall Sin, 2017, 53(10): 1377-1384.

Download:  HTML  PDF(5025KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu-containing titanium alloy has been proved to possess excellent antibacterial performance, which has great potential for clinical application. In this work, the effect of cooling rate on the microstructure, mechanical properties, corrosion resistance and antibacterial property of a Ti6Al4V-5Cu alloy was investigated. Results showed that the furnace-cooled alloy exhibited the best ductility because of the maximum size and volume fraction of the primary α phase in microstructure. The alloys water quenched from 740 and 820 ℃ respectively demonstrated low hardness and yield strength due to the existence of orthorhombic α′′ phase in microstructure. The alloy quenched at 910 ℃ showed the highest hardness and tensile strength, but the lowest plasticity because of the presence of acicular hcp α′ phase. With the increase of heating temperature, the elemental distribution in the alloy became more uniform, and therefore the corrosion resistance increased gradually. However, the cooling rate did not obviously change the antibacterial property of the alloy. The Ti6Al4V-5Cu alloy showed excellent antibacterial property under different cooling rates.

Key words:  Cu-containing titanium alloy      microstructure      mechanical property      corrosion resistance      antibacterial property     
Received:  03 July 2017     
ZTFLH:  R318.08  
Fund: Supported by National Natural Science Foundation of China (No.51631009), National Key Research and Development Program of China (No.2016YFC1100600), Youth Innovation Promotion Association, CAS (No.2014168), Natural Science Foundation of Guangdong Province (No.2015A030312004), and Joint Foundation of Natural Science Foundation of Liaoning Province and Shenyang National Laboratory for Materials Science (No.2015021004)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00267     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1377

Fig.1  XRD spectra of Ti6Al4V-5Cu alloy sample
(a) air cooling (AC) and furnace cooling (FC)
(b) water quenching (WQ)
Fig.2  SEM images of Ti6Al4V-5Cu alloy sample
(a) 740FC (b) 740AC (c) 740WQ (d) 820WQ (e) 910WQ
Fig.3  TEM images and EDS analysis of Ti6Al4V-5Cu alloy samples
(a) 740AC (b) 740WQ (c) 910WQ (d) EDS of 740AC
Fig.4  Effects of cooling rate for Ti6Al4V-5Cu alloy on Vickers hardness (a), tensile properties (b) and corrosion resistance (c) (Ecorr—corrosion potential, icorr—corrosion current density)
Fig.5  Typical photographs (a) and antibacterial rates (b) of S. aureus colonization after 24 h cultures of Ti6Al4V-5Cu alloy samples
Fig.6  Typical 3D photographs (a) and thickness (b) of S. aureus biofilms incubated on the surfaces of Ti6Al4V-5Cu alloy samples for 24 h co-culture (*p<0.05 when compared to Ti6Al4V alloy)
[1] Navarro M, Michiardi A, Casta?o O, et al.Biomaterials in orthopaedics[J]. J. R. Soc. Interface, 2008, 5: 1137
[2] Arciola C R, Alvi F I, An Y H, et al.Implant infection and infection resistant materials: A mini review[J]. Int. J. Artif. Organs, 2005, 28: 1119
[3] Deysine M.Infections associated with surgical implants[J]. New Engl. J. Med., 2004, 351: 193
[4] Hu H, Zhang W, Qiao Y, et al.Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta Biomater., 2012, 8: 904
[5] Zhao L Z, Wang H R, Huo K F, et al.Antibacterial nano-structured titania coating incorporated with silver nanoparticles[J]. Biomaterials, 2011, 32: 5706
[6] Ren L, Xu L, Feng J W, et al.In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis[J]. J. Mater. Sci. Mater. Med., 2012, 23: 1235
[7] Liu J, Li F B, Liu C, et al.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J]. Mater. Sci. Eng., 2014, C35: 392
[8] Ren L, Memarzadeh K, Zhang S Y, et al.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties[J]. Mater. Sci. Eng., 2016, C67: 461
[9] Ren L, Ma Z, Li M, et al.Antibacterial properties of Ti-6Al-4V-xCu alloys[J]. J. Mater. Sci. Technol., 2014, 30: 699
[10] Filip R, Kubiak K, Ziaja W, et al.The effect of microstructure on the mechanical properties of two-phase titanium alloys[J]. J. Mater. Process. Technol., 2003, 133: 84
[11] Gil F J, Ginebra M P, Manero J M, et al.Formation of α-Widmanst?tten structure: Effects of grain size and cooling rate on the Widmanst?tten morphologies and on the mechanical properties in Ti6Al4V alloy[J]. J. Alloys Compd., 2001, 329: 142
[12] Osório W R, Cremasco A, Andrade P N, et al.Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications[J]. Electrochim. Acta, 2010, 55: 759
[13] Koike M, Cai Z, Oda Y, et al.Corrosion behavior of cast Ti-6Al-4V alloyed with Cu[J]. J. Biomed. Mater. Res., 2005, 73B: 368
[14] Kikuchi M, Takada Y, Kiyosue S, et al.Mechanical properties and microstructures of cast Ti-Cu alloys[J]. Dent. Mater., 2003, 19: 174
[15] Aoki T, Okafor I C I, Watanabe I, et al. Mechanical properties of cast Ti-6Al-4V-XCu alloys[J]. J. Oral Rehabil., 2004, 31: 1109
[16] Ma Z, Ren L, Liu R, et al.Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J. Mater. Sci. Technol., 2015, 31: 723
[17] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 74(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 74)
[18] Matsumoto H, Yoneda H, Sato K, et al.Room-temperature ductility of Ti-6Al-4V alloy with α′ martensite microstructure[J]. Mater. Sci. Eng., 2011, A528: 1512
[19] Colins P C, Koduri S, Welk B, et al.Neural networks relating alloy composition, microstructure, and tensile properties of α/β-processed TIMETAL 6-4[J]. Metall. Mater. Trans., 2012, 44A: 1441
[20] Jovanovi? M T, Tadi? S, Zec S, et al.The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy[J]. Mater. Des., 2006, 27: 192
[21] Tarzimoghadam Z, Sandl?bes S, Pradeep K G, et al.Microstructure design and mechanical properties in a near-α Ti-4Mo alloy[J]. Acta Mater., 2015, 97: 291
[22] Sun Y, Zeng W D, Han Y F, et al.Modeling the correlation between microstructure and the properties of the Ti-6Al-4V alloy based on an artificial neural network[J]. Mater. Sci. Eng., 2011, A528: 8757
[22] Li C F, Li G P, Yang Y, et al.Influence of quenching temperature on martensite type in Ti-4Al-4.5Mo alloy[J]. Acta Metall. Sin., 2010, 46: 1061(李长富, 李阁平, 杨义等. 淬火温度对Ti-4Al-4.5Mo合金马氏体类型的影响[J]. 金属学报, 2010, 46: 1061)
[24] Jiang X J, Jing R, Ma M Z, et al.The orthorhombic α″ martensite transformation during water quenching and its influence on mechanical properties of Ti-41Zr-7.3Al alloy[J]. Intermetallics, 2014, 52: 32
[25] Yu Z T, Zhou L. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM [J]. Mater. Sci. Eng., 2006, A438-440: 391
[26] Moiseev V N, Polyak é V, Sokolova A Y.Martensite strengthening of titanium alloys[J]. Met. Sci. Heat Treat., 1975, 17: 687
[27] Bai Y, Gai X, Li S J, et al.Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline[J]. Corros. Sci., 2017, 123: 289
[28] Liu R, Memarzadeh K, Chang B, et al.Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis[J]. Sci. Rep., 2016, 6: 29985
[29] Zhang E L, Wang X Y, Chen M, et al.Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application[J]. Mater. Sci. Eng., 2016, C69: 1210
[30] Ma Z, Ren L, Liu R, et al.Effect of heat treatment on cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J. Mater. Sci. Technol., 2015, 31: 723
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!