Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1132-1138    DOI: 10.3724/SP.J.1037.2011.00751
论文 Current Issue | Archive | Adv Search |
EFFECTS OF Mo CONTENT ON THE MICROSTRUCTURE AND FRICTION AND WEAR PROPERTIES OF TiMoN FILMS
XU Junhua, JU Hongbo, YU Lihua
Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003
Cite this article: 

XU Junhua JU Hongbo YU Lihua. EFFECTS OF Mo CONTENT ON THE MICROSTRUCTURE AND FRICTION AND WEAR PROPERTIES OF TiMoN FILMS. Acta Metall Sin, 2012, 48(9): 1132-1138.

Download:  PDF(3811KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Over the past years, hard wear resistant TiN coatings deposited by magnetron sputtering have gained increasing importance in the field of decorative and cutting tool coatings. With the ongoing trend to multifunctional operating cutting tools, new solutions in the design of tools are demanded. The alloying of TiN coatings with additional elements, for instance, can effectively enhance hardness, wear resistance and so on. Both TiAlN and TiSiN coatings, well-studied nitride systems, yield superior oxidation resistance, and extend the life of cutting tools by significant margins in comparison with TiN coatings. Numerous research activities focus on TiAlN, TiSiN systems, whereas limited efforts have been made to characterize TiMoN coatings. Low coefficient of friction is a common property in various Mo-containing coatings that can react with oxygen in the air into Magneli phase (MoO3). The effects of Mo alloying on mechanical properties and wear resistance of TiN-based coatings remain to be investigated. TiMoN composite films with various Mo concentrations were deposited using RF reactive magnetron sputtering and characterized by SEM, EDS, XRD, nano-indentation and wearing tester. The results show that TiMoN coatings have fcc structure. When atomic fraction of Mo in total metallic elements (X) is less than 68.37\%, a TiMoN solid solution was formed by dissolution of Mo into the TiN lattice; when X is more than 68.37\%, a TiMoN solid solution was formed by dissolution of Ti into the Mo2N lattice. With Mo contents increase, preferential orientation change, microhardness increase significantly, the coefficient friction and grain size decrease, friction and wear of TiMoN coatings are excellent. Low coefficient friction can be primarily attributed to the formation of lubricious MoO3 on the wear track surface in dry sliding wear conditions. The principles of a crystal chemical model relating the lubricity of complex oxides to their ionic potentials can explain this mechanism.
Key words:  RF reactive magnetron sputtering      TiMoN coatings      microstructure      friction and wear     
Received:  03 December 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51074080) and Nature Science Foundation of Jiangsu Province (No.BK2008240)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00751     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1132

[1] Yu L H, Dong S R, Xu J H, Li G Y. Acta Phys Sin, 2008; 57: 3607

(喻利花, 董师润, 许俊华, 李戈杨. 物理学报, 2008; 57: 3607)

[2] Hu S B, Cui K. Mater Prot, 2001; 34: 24

[3] Yu L H, Dong S T, Dong S R, Xu J H. Acta Phys Sin, 2008; 57: 5151

(喻利花, 董松涛, 董师润, 许俊华. 物理学报, 2008; 57: 5151)

[4] Hiroyuki H, Koji S, Akihiro M, Kiyotaka K, Hideaki M. J Refrac Mater Hard Mater, 2012

[5] Masatoshi N, Yosuke G, Osamu U, Shinzo O. Catalysis Today, 1998; 43: 249

[6] Ozturk A, Ezirmik K V, Kazmanl? K, Urgen M, Ery?lmaz O L, Erdemir A. Trib Int, 2008; 41: 49

[7] Sarioglu C, Demirler U, Kazmanli M K, Urgen M. Surf Coat Technol, 2005; 190: 238

[8] ¨Urgen M, Eryilmaz O L, Cakir A F, Kayali E S, I ¸sik Y. Surf Coat Technol, 1997; 94–95: 501

[9] Kazmanli M K, ¨urgen M, Cakir A F. Surf Coat Technol, 2003; 167: 77

[10] Kathrein M, Michotte C, Penoy M, Polcik P, Mitterer C. Surf Coat Technol, 2005; 200: 1867

[11] Gassner G, Mayrhofer P H, Kutschej K, Mitterer C, Kathrein M. Surf Coat Technol, 2006; 201: 3335

[12] Sanjines R, Wiemer C, Almeida J, Levy F. Thin Solid Films, 1996; 290–291: 334

[13] Regent F, Musil J. Surf Coat Technol, 2001; 142–144: 146

[14] Jiang C H, Yang C Z. Analysis of Materials by Ray–Diffraction and Scattering. Beijing: Higher Education Press, 2010: 169

(姜传海, 王传铮. 材料射线衍射和散射分析. 北京: 高等教育出版社, 2010: 169)

[15] Yang S C, Li X Y, Cooke K E, Teer D G. Appl Surf Sci, 2011

[16] Abu–Zeid O A, Bates R I. Surf Coat Technol, 1996; 86–87: 256

[17] Sandu C S, Benkahoul M, Sanjine R, Sanjin´es R, L´evy F. Surf Coat Technol, 2006; 201: 2897

[18] NoseM, Deguchi Y, Mae T. Surf Coat Technol, 2003; 174– 175: 261

[19] Birkholz M, Albers U, Jung T. Surf Coat Technol, 2004; 179: 279

[20] Yang Q, Zhao L R, Patnaik P C, Zeng X T. Wear, 2006; 261: 119

[21] Yang S C,Wiemann E, Teer D G. Surf Coat Technol, 2004; 188–189: 662

[22] Urgen M, Eryilmaz O L, Cakir A F, Kayali E S, Nil¨ufer B, Isik Y. Surf Coat Technol, 1997; 94–95: 501

[23] Yang Q, Zhao L R. Surf Coat Technol, 2005; 200: 1709

[24] Walker J C, Ross I M, Reinhard C, Rainforth W M, Hovsepian P E. Wear, 2009; 267: 965

[25] Zhou Z, Rainforth W M, Luo Q, Hovsepian P E, Ojeda J J, Gonzalez M E R. Acta Mater, 2010; 58: 2912

[26] Pfeiler M, Kutschej K, Penoy M, Michotte C. Int J Refr Metal Hard Mater, 2009; 27: 502

[27] Woydt M, Skopp A, Dorfel I, Witke K. Wear, 1998; 218: 84

[28] Erdemir A. Trib Lett, 2000; 8: 97

[29] Gulbi´nskiW, Suszko T, Sienicki W, Warcholi´nski B. Wear, 2003; 254: 129

[30] Blanchet T A, Lauer J L, Liew Y F. Rhee S J, Sawyer W G. Surf Coat Technol, 1994; 68–69: 446

[31] Erdemir A, Erck R A, Fenske G R, Hong H. Wear, 1997; 203–204: 588

[32] Kanakia M, Owens M E, Ling F F. Wear, 1984; 2: 19

[33] Wahl K J, Seitzman L E, Bolster R N, Singer I L, Peterson M B. Surf Coat Technol, 1997; 89: 245
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!