Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 983-988    DOI: 10.3724/SP.J.1037.2011.00748
论文 Current Issue | Archive | Adv Search |
EFFECT OF SUBLAYER ON THE STRUCTURES AND TRIBOLOGICAL PROPERTIES OF GLC COATING ON Al–BASED ALLOY
SHI Huiying, LONG Yanni, JIANG Bailing, CHEN Dichun
School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048
Cite this article: 

SHI Huiying LONG Yanni JIANG Bailing CHEN Dichun. EFFECT OF SUBLAYER ON THE STRUCTURES AND TRIBOLOGICAL PROPERTIES OF GLC COATING ON Al–BASED ALLOY. Acta Metall Sin, 2012, 48(8): 983-988.

Download:  PDF(2268KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Graphite–like carbon (GLC) film is a kind of antifriction coating. Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings were prepared by using an unbalanced magnetron sputtering system on Al–based alloy, where Al and Cr layer are the sublayers, Cr–C and Al–Cr–C are the transition layers. As a comparation, the GLC coating without sublayer was also deposited on the substrate. The microstructure, binding force and tribological properties of as–deposited coatings were studied. The results show that the Cr sublayer shows a columnar growth structure, while the columnar grain is not found in the Cr–C transition layer which has a gradient composition distribution. There is a good combining interface between Al sublayer and Al–based alloy substrate. Al–Cr–C transition layer has a gradient composition distribution also. GLC layers based on different sublayers and transition layers have amorphous structures. Compared with GLC coating without sublayer, the binding forces of Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings are obviously higher, and the Al/Al–Cr–C/GLC composite coating has the maximum critical load. Under different loading conditions, the friction coefficients of both Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings are low and similar to each other.
Key words:  unbalanced magnetron sputtering      GLC film      microstructure      binding force      tribological property     
Received:  05 December 2011     
ZTFLH: 

TG146.2

 
Fund: 

Supported by National Basic Research Program of China (No.2009CB724406)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00748     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/983

[1] Wei T, Yan F, Tian J. J Alloys Compd, 2005; 389: 169

[2] Sun X, Jiang Z, Xin S, Yao Z. Thin Solid Films, 2005; 471: 194

[3] Akarca S S, Altenhof W J, Alpas A T. Tribol Int, 2007; 40: 735

[4] Wu J J. Foundry Technol, 2002; 23: 273

(吴浚郊. 铸造技术, 2002; 23: 273)

[5] Xue W B, Shi X L, Hua M, Li Y L. Appl Surf Sci, 2007; 253: 6118

[6] Donnet C, Erdemir A. Surf Coat Technol, 2004; 180: 76

[7] Xu B S, Zhu S H, Liu S S. Materials Surface Engineering. Harbin: Harbin Institute of Technology Press, 2005: 1

(徐滨士, 朱绍华, 刘世参. 材料表面工程. 哈尔滨 : 哈尔滨工业大学出版社, 2005: 1)

[8] Zhou F, Wang Y, Ding H Y, Wang M L, Yu M, Dai Z D. Surf Coat Technol, 2008; 202: 3808

[9] Zhu M H, Cai Z B, Lin X Z, Ren P D, Tan J, Zhou Z R. Wear, 2007; 263: 472

[10] Ding H Y, Dai Z D, Skuiry S C, Hui D. Tribol Int, 2010; 43: 868

[11] Li H X, Rudnev V S, Zheng X H, Yarovay T P, Song R G. J Alloys Compd, 2008; 462: 99

[12] Nie X,Wilson A, Leyland A, Matthews A. Surf Coat Technol, 2000; 121: 506

[13] Dobrzanski L A, Polok M, Panjan P, Bugliosi S, Adamiak M. J Mater Process Technol, 2004; 155–156: 1995

[14] Baragetti S, Gerosa R, Rivolta B, Silva G, Tordini F. Procedia Eng, 2011; 10: 3375

[15] Dobrza’nski L A, Polok M, Adamiak M. J Mater Process Technol, 2005; 164–165: 843

[16] Hua M, Ma H Y, Li J, Mok C K. Surf Coat Technol, 2006; 200: 3612

[17] Xia C B, Wang D J. Surface Engineering of Aviation Maintenance. Xinyang: Air Force flight School Press, 1997: 206

(夏成宝, 汪定江. 航空维修表面工程. 信阳: 空军一航院出版社, 1997: 206)

[18] Wang Y X, Wang L P, Xue Q J. Appl Surf Sci, 2011; 257: 10246

[19] Wang Y X, Wang L P, Wang S C, Zhang G A, Wood R J K, Xue Q J. Tribol Lett, 2010; 40: 301

[20] Teer D G. Wear, 2001; 251: 1068

[21] Renevier N M, Hamphire J, Fox V C, Allen T, Teer D G. Surf Coat Technol, 2001; 142: 67

[22] Zhao L, Fu Y H, Liu D Y, Zhu X D, He J W. Chin J Inorg Mater, 2005; 20: 181

(赵蕾, 付永辉, 刘登益, 朱晓东, 何家文. 无机材料学报, 2005; 20: 181)

[23] Chen D C, Jiang B L, Shi H Y, Long Y N. Vacuum, 2012; 86: 1576

[24] Shi H Y, Zhang B, Jiang B L, Zhang Y H, Chen Z S. Trans Mater Heat Treat, 2009; 30: 136

[25] Ichimur H, Ishii Y. Surf Coat Technol, 2003; 165: 1
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!