Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 977-982    DOI: 10.3724/SP.J.1037.2012.00124
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF THE SHAPE OF SHIELDING FILLERS ON ELECTROMAGNETIC PROPERTIES OF Fe@Ag CORE–SHELL COMPOSITE PARTICLES
ZHAO Suling 1,2, CHEN Jing 1,2, WANG Yilong 1,3
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
2. Center for Material Research and Testing, Wuhan University of Technology, Wuhan 430070
3. School of Sciences, Wuhan University of Technology, Wuhan 430070
Cite this article: 

ZHAO Suling CHEN Jing WANG Yilong. INFLUENCE OF THE SHAPE OF SHIELDING FILLERS ON ELECTROMAGNETIC PROPERTIES OF Fe@Ag CORE–SHELL COMPOSITE PARTICLES. Acta Metall Sin, 2012, 48(8): 977-982.

Download:  PDF(1447KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Due to the rapid growth of radio frequency radiation sources, electromagnetic shielding composite materials have become a research hotspot in civil control of electromagnetic radiation technology and military equipment shielding technology. The shielding effectiveness (SE) of these electromagnetic shielding composite materials has much to do with the structures, volume resistivity and magnetic properties of the fillers. Spherical and flaky Fe@Ag core–shell composite particles were synthesized by a liquid electroless plating method in this work. The phase, morphology and chemical composition of spherical and flaky particles were characterized. The magnetic property of fillers was analyzed. The effects of the shape of these shielding fillers on complex permeability, conductivity, magnetic properties and shielding effectiveness of their composition material were investigated. The results showed that spherical and flaky carbonyl iron powders/silver core–shell composite particles both had intact core–shell microstructure. Silver coating of these spherical and flaky composite particles were compact and even. Spherical and flaky Fe@Ag core–shell composite particles both had excellent soft magnetic properties, which shape of composite particles didn’t influence their magnetic properties. Compared with the electromagnetic shielding composite material based on isotropous shielding fillers, spherical Fe@Ag composite particles, the electromagnetic shielding composite material containing flaky core–shell composite particles showed higher complex permeability, lower volume resistivity and higher shielding effectiveness. In the frequency of electromagnetic wave ranging from 30 MHz to 1500 MHz, the shielding effectiveness of the electromagnetic shielding rubber containing flaky particles is –51— –55 dB. And the physical essence of better shielding effectiveness and stronger absorbing loss of composite materials containing flaky fillers was theoretically analyzed.
Key words:  shape anisotropy      core–shell composite particle      electromagnetic shielding      electromagnetic property     
Received:  09 March 2012     
Fund: 

Supported by Fundamental Research Funds for the Central Universities (No.121214007), Weapons Equipment Pre–Research Foundation (No.9140A31030110JB3403) and Manufacture–Study–Research Program of Guangdong Province (No.2010B090400091)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00124     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/977

[1] Wang Y L, Zhang Q X, Shao H M, Guan J G. Chin J Struct Chem, 2010; 29: 555

[2] Tong G X, Guan J G, Fan X A, Wang W, Li W. Acta Metall Sin, 2008; 44: 867

(童国秀, 官建国, 樊希安, 王维, 李维. 金属学报, 2008; 44: 867)

[3] Tong G X, Guan J G, Zhang W Y, Zhang W, Wang W, Dong D M. Acta Metall Sin, 2008; 44: 1001

(童国秀, 官建国, 张五一, 张巍, 王 维, 董德明. 金属学报, 2008; 44: 1001)

[4] Han E G, Kim E A, Oh K W. Synth Met, 2001; 123: 469

[5] Yuen S M, Ma C C M, Chuang C Y, Yu K C, Wu S Y, Yang C C, Wei M H. Compos Sci Technol, 2008; 68: 963

[6] Deng H, Skipa T, Bilotti E, Zhang R, Lellinger D, Mezzol L, Fu Q, Alig I, Peijs T. Adv Funct Mater, 2010; 20: 1424

[7] Wang Y L, Li W, Zhang Q X, Wang W, Guan J G. Chem J Chin Univ, 2010; 31: 1934

(王一龙, 李维, 章桥新, 王维, 官建国. 高等学校化学学报, 2010; 31: 1934)

[8] Cao X G, Zhang H Y. J Mater Eng, 2007; 8: 69

(曹晓国, 张海燕. 材料工程, 2007; 8: 69)

[9] Wu L B, Gao Y L, Li Y H. Design on Electromagnetic Compatibility of Modern Electronic System. Bejing: Defence Industry Press, 2004: 27

(吴良斌, 高玉良, 李延辉. 现代电子系统的电磁兼容设计. 北京: 国防工业出版社, 2004: 27)

[10] Jiang H J, Moon K S, Li Y, Wong C P. Chem Mater, 2006; 18: 2969

[11] Zhang Q X, Yang L N, Zhang J M, Guan J G, Wang Y L. J Chin Ceram Soc, 2007; 35: 987

(章桥新, 杨丽宁, 张佳明, 官建国, 王一龙. 硅酸盐学报, 2007; 35: 987)

[12] Ye L L, Lai Z H, Liu J, Tholen A. IEEE Trans Electron Pack, 1999; 22: 299

[13] Chiang H W, Chung C L, Chen L C. J Adhes Sci Technol, 2005; 19: 565

[14] Walser R M, Win W. IEEE Trans Magn, 1998; 34: 1390

[15] Walser R M, Kang W. IEEE Trans Magn, 1998; 34: 1144

[16] Ge F D, Zhu J, Chen L M. Chin J Electron, 1996; 24(6): 82

(葛副鼎, 朱静, 陈利民. 电子学报, 1996; 24(6): 82)

[17] Ge F D, Zhu J, Chen L M. Aero Mater Technol, 1996; (5): 42

(葛副鼎, 朱静, 陈利民. 宇航材料工艺, 1996; (5): 42)

[18] Zhou J, Wang W, Sun Z G, Guan J G. Acta Metall Sin, 2010; 46: 967

(周静, 王维, 孙志刚, 官建国. 金属学报, 2010; 46: 967)

[19] Zhao S L, Chen J, Wang Y L, Sun Z G, Guan J G. J Inorg Mater, 2010; 25: 1180

(赵素玲, 陈晶, 王一龙, 孙志刚, 官建国. 无机材料学报, 2010; 25: 1180)

[20] Li ZW, Chen L, Ong C K, Yang Z. J Mater Sci, 2005; 40: 719

[21] Tong G X, Wang W, Guan J G, Zhang Q J. J Inorg Mater, 2006; 21: 1461

(童国秀, 王维, 官建国, 张清杰. 无机材料学报, 2006; 21: 1461)

[22] Cho H S, Kim A S, Kim S M, Namgung J, Kim M C, Lee G A. Phys Status Solidi, 2004; 201A: 1942

[23] Dong D M, Guan J G,Wang W, Li W, Zhou J. Acta Metall Sin, 2009; 45: 1141

(董德明, 官建国, 王维, 李 维, 周静. 金属学报, 2009; 45: 1141)

[24] Xie J L, Liang B L, Deng L J. Funct Mater, 2008; 39: 41

(谢建良, 梁波浪, 邓龙江. 功能材料, 2008; 39: 41)

[25] Ruschau G R, Yashikaw A S, Newnham R E. J Appl Phys, 1992; 72: 953
No Suggested Reading articles found!