Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 797-806    DOI: 10.3724/SP.J.1037.2012.00215
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND TOUGHNESS OF THE SIMULATED WELDING HEAT AFFECTED ZONE IN X100 PIPELINE STEEL WITH HIGH DEFORMATION RESISTANCE
NIE Wenjin, SHANG Chengjia, YOU Yang, ZHANG Xiaobing,  Sundaresa Subramanian
1) School of Material Science and Technology, University of Science and Technology Beijing, Beijing 100083
2) Chief Engineer Office, Jiangsu Shagang Group, Zhangjiagang 215625
3) Department of Materials and Engineering, McMaster University, Hamilton, Canada, L8S4M1
Cite this article: 

NIE Wenjin SHANG Chengjia YOU Yang ZHANG Xiaobing Sundaresa Subramanian. MICROSTRUCTURE AND TOUGHNESS OF THE SIMULATED WELDING HEAT AFFECTED ZONE IN X100 PIPELINE STEEL WITH HIGH DEFORMATION RESISTANCE. Acta Metall Sin, 2012, 48(7): 797-806.

Download:  PDF(9618KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A single welding thermal-cycles with different heat inputs (8, 16, 20, 25, 30 and 50 kJ/cm) were simulated by Gleeble 3800 to study the correlation of toughness, hardness and microstructure in heat affect zone (HAZ) of the X100 pipeline steel with multi-phases and 0.10\%Nb (mass fraction). The microstructures of the CGHAZ in HAZ were characterized by means of OM, SEM and EBSD, and mechanical properties were tested. The results show that for a low heat input of less than 20 kJ/cm, the microstructure is lath bainite or acicular ferrite structure with high-density of large-angle boundaries (≧15o), which exhibits good Charpy impact toughness. However, for a large heat input over 25 kJ/cm, the uniformity of prior austenite grains becomes worse, the M/A constituents and the granular bainite (GB) are coarsening, and the amount of large-angle boundaries decreases with the increase of heat input. The results of the instrumented Charpy impact test and the observation of fracture surfaces on the specimens indicate that the cracks are induced near the coarse M/A constituents and the large-angle boundaries can remarkably restrict crack propagations. Therefore, in order to ensure a strong match between the HAZ and the base metal, and the resistance to hydrogen induced delayed damage because of high hardness of HAZ, the heat input energy should be about between 15 and 20  kJ/cm.
Key words:  pipeline steel      heat affect zone(HAZ)      heat input      toughness      deformation resistance      microstructure     
Received:  20 April 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00215     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/797

[1] Wang X X. Weldding Pipe, 2012; 35( ): 5

(王晓香. 焊管, 2012; 35(~): 5)

[2] Shang C J, WangX X, Liu Q Y, Fu J Y. Int Seminar on Welding of Pipline Steel, Arasa, Brazil: December, 2011

[3] Miao C L, Shang C J, Cao J P, Wang X M, He X L. Iron Steel, 2009; 44: 62

(缪成亮, 尚成嘉, 曹建平, 王学敏, 贺信莱. 钢铁, 2009, 44: 62)

[4] Miao C L, Shang C J, Zhang G D, Sunbrainmani S. Mater Sci Eng, 2010; A527: 4985

[5] Miao C L, Shang C J, Wang X M, Zhang L F, Subramanian S V. Acta Metall Sin, 2010; 46: 5419

(缪成亮, 尚成嘉, 王学敏, 张龙飞, Subramanian S V. 金属学报, 2010; 46: 5419)

[6] Miao C L, Shang C J, Zhang G D, Zhu G H, Zurob H, Subramanian S V. Front Mater Sci China, 2010; 4: 197

[7] Nie W J, Shang C J, Guan H L,Zhang X B, Chen S H. Acta Metall Sin, 2012; 48: 298

(聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧. 金属学报, 2012; 48: 298)

[8] Shang C J. Technology Forum on High Grade Pipeline Steels for Oil & Gas Industry–New Challenges for Steels from Strategic Demand of Exploration and Transportation of Oil & Gas, Beijing, Chinese Society for Metals (CSM), 2011: 55)

(尚成嘉. 石油天然气用高性能钢技术论坛--油气开采、储运的战略需求对钢铁材料的新挑战, 北京: 中国金属学会, 2011: 55)

[9] Miao C L, Liu Z W, Guo H, Shang C J, Fu H Y, Wang X X. Trans Mater Heat Treatment, 2012; 33: 99

(缪成亮, 刘振伟, 郭晖, 尚成嘉, 付彦宏, 王晓香. 材料热处理学报, 2012; 33: 99)

[10] Grong φ. Metallurgical Modelling of Welding. 2nd ed. London: The Institute of Materials, 1997: 26

[11] Zurob H S, Zhu G, Subramanian S V, Purdy G R. Hutchinson C R, Brechet Y. ISIJ Int, 2005; 45: 713

[12] Diazfuentes M, Izamendia A, Gutierrez I. Metall Mater Trans, 2003; 34A: 2005

[13] Lambert A, Garat X, Sturel T, Gourgues A F, Gingell A. Scr Mater, 2000; 43: 161

[14] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26

[15] Wang Y K, Shan Y Y. Inter Pipeline Steel Summit, Beijing, 2009: 162

(王仪康, 单以银. 国际管线钢峰会, 北京, 2009: 162)

[16] Wang Y K, Pan J H, Yang K, Shan Y Y. Weldding Pipe, 2007; 30(1): 11

(王仪康, 潘家华, 杨 柯, 单以银. 焊管, 2007; 30(1): 11)

[17] Li H L, Li X, Ji L K, Chen H D. Weldding Pipe, 2007; 30(5): 5

(李鹤林, 李宵, 吉玲康, 陈宏达. 焊管, 2007; 30(5): 5)

[18] Hwang B, Kim Y G, Lee S, Kim Y M, Yoo J Y. Metall Mater Trans, 2005; 36A: 2107

[19] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K. Acta Mater, 2006; 54: 435

[20] Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46

[21] Sungtak Lee, Byung Chun Kim, Dongil Kwon. Metall Mater Trans, 1993; 24A: 1133

[22] Liu D Y, Xu H, Yang K, Bai B Z, Fang H S. Acta Metall Sin, 2004; 40: 882

(刘冬雨, 徐鸿, 杨 昆, 白秉哲, 方鸿生. 金属学报, 2004; 40: 882)

[23] Liu D S, Cheng B G, Luo M. Acta Metall Sin, 2011; 47: 1233

(刘东升, 程丙贵, 罗咪. 金属学报, 2011; 47: 1233)

[24] Wiesner C S. Int J Pres Ves Piping, 1996; 69: 185

[25] Hashemi S H. Int J Pres Ves Piping, 2008; 85: 879
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
No Suggested Reading articles found!