Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 807-814    DOI: 10.3724/SP.J.1037.2012.00005
论文 Current Issue | Archive | Adv Search |
PITTING CORROSION DYNAMICS AND MECHANISMS OF 304 STAINLESS STEEL IN 3.5%NaCl SOLUTION
DU Nan, TIAN Wenming, ZHAO Qing, CHEN Sibing
National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology Institute, Nanchang Hangkong University, Nanchang 330063
Cite this article: 

DU Nan TIAN Wenming ZHAO Qing CHEN Sibing. PITTING CORROSION DYNAMICS AND MECHANISMS OF 304 STAINLESS STEEL IN 3.5%NaCl SOLUTION. Acta Metall Sin, 2012, 48(7): 807-814.

Download:  PDF(2593KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Pitting rate of a single pit and pitting mechanisms of the 304 stainless steel in 3.5%NaCl solution were investigated by utilizing electronic speckle pattern interferometer (ESPI), electrochemical noise (EN) and three-dimensional video microscope. The results show that under 0.05 V polarization, the pitting corrosion process can be divided into four stages: drastic fluctuations of the current noise occured at 740 s, which means the passivation film was breaking, thus it can be concluded that the span of pitting incubation period is 740 s; a speckle occurred on the ESPI image at 750 s, thus the span of initiation period of the steady pitting is about 10 s; the growth rate of the pit increased during 750-780 s, which indicates that the pit corrosion is in active dissolution period; since then, the growth rate of the pit declined rapidly which means the pit was repassivated. After\linebreak 793 s, the growth rate of the pit raised again as secondary pits emerged. The pit image was observed and its volume was measured by three-dimensional video microscope, and the results were in agreement with those which were obtained by corrosion product concentration analysis. Some secondary pits were found in the bottom of the pit in three-dimensional reconstruction images.
Key words:  304 stainless steel      electrochemical noise      ESPI      pitting rate     
Received:  04 January 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00005     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/807

[1] Liao J X, Jiang Y M,WuWW, Zhong C, Li J. Acta Metall Sin, 2006; 42: 1187

(廖家兴, 蒋益明, 吴玮巍, 钟澄, 李劲. 金属学报, 2006; 42: 1187)

[2] Han D, Jiang Y M, Deng B, Zhang L H, Zhang W, Li J. Acta Metall Sin, 2009; 45: 919

(韩冬, 蒋益明, 邓博, 张丽华, 张伟, 李 劲. 金属学报, 2009; 45: 919)

[3] Dong C F, Luo H, Xiao K, Sun T, LiuQ, Li XG. J Wuhan Univ Technol–Mater Sci, 2011; 26: 641

[4] Li H B, Jiang Z H, Yang Y, Cao Y, Zhang Z R. J Metall Mater, 2009; 16: 517

[5] Li G M, Guo X P, Zheng J S. J Iron Steel Res, 2004; 11(4): 47

[6] Hu L H, Du N, Wang M F, Zhao Q. J Chin Soc Corros Prot, 2007; 27: 233

(胡丽华, 杜楠, 王梅丰, 赵晴. 中国腐蚀与防护学报, 2007; 27: 233)

[7] Hong J F, Tan H, Chen L D, Li J, Li L, Jiang Y M. Acta Metall Sin, 2011; 47: 1445

(洪巨峰, 谭华, 陈林豆, 李 劲, 李莉, 蒋益明. 金属学报, 2011; 47: 1445)

[8] Tan Y J, Balley S, Kinsella B. Corros Sci, 1996; 38: 1681

[9] Smulko J, Darouicki K. J Electroanal Chem, 2003; 545: 59

[10] Wang M F, Du N, Li X G, Zhao Q, Liu G. Corros Prot, 2009; 30(1): 29

(王梅丰, 杜楠, 李晓刚, 赵 晴, 刘 刚. 腐蚀与防护, 2009; 30(1): 29)

[11] Wang M F, Li X G, Du N, Huang Y Z, Korsunsky A. Electrochem Commun, 2008; 10: 1000

[12] Pan Y, Zhang S P, Zhou J L, Li X G, Xiao Y D. Equip Environ Eng, 2010; 7(4): 67

(潘莹, 张三平, 周建龙, 李晓刚, 萧以德. 装备环境工程, 2010; 7(4): 67)

[13] Lian C H, Gao Y. Chem Eng Mach, 1995; 22(2): 87

(梁成浩, 高扬. 化工机械, 1995; 22(2): 87)

[14] Ye T, Gao C Z. Mater Prot, 2007; 40(11): 78

(叶涛, 高灿柱. 材料保护, 2007; 40(11): 78)

[15] Liu G. Master Dissertation, Nanchang Hangkong Univ, 2008

(刘刚. 南昌航空大学硕士学位论文, 2008)

[16] Pujar M G, Anita T, Shaikh H, Dayul R K, Khatak H S. J Mater Eng Perform, 2007; 16: 494

[17] Jong J K. Met Mater Int, 2011; 17: 777

[18] Du N, Huang L, Xu S, Wang L Q. Failure Anal Prev, 2009; 4: 71

(杜楠, 黄乐, 徐 珊, 王力强. 失效分析与预防, 2009; 4: 71)

[19] Du N, Liu G, Zhao Q. Mater Sci, 2008; 2: 326

[20] Jong J K. Met Mater Int, 2009; 15: 279

[21] Girija S, Kamachi U, Mudali B R. Appl Electrochem, 2011; 41: 973

[22] Yu Q B, Sun Y. Hot Work Technol, 2010; 39(2): 1

(于庆波, 孙莹. 材料热处理技术, 2010; 39(2): 1)

[23] Chen Y F, Rairdan R, Luo J L. Appl Electrochem, 1998; 28: 1371

[24] Zhang J Q, Zhang Z. J Chin Soc Corros Prot, 2002; 22: 241

(张鉴清, 张昭. 中国腐蚀与防护学报, 2002; 22: 241)

[25] Zhang Z, Zhang J Q. Chin J Nonferrous Met, 2001; 11: 284

(张昭, 张鉴清. 中国有色金属学报, 2001; 11: 284)

[26] Li L, Li X G, Dong C f, Cheng Y F. Corros Eng Sci Tech, 2011; 46: 340

[27] Sun D M, Jiang Y M, Tang Y, Xiang Q W, Zhong C, Liao J X, Li J. Electrochim Acta, 2009; 54: 1558

[28] Frankel G S. J Electrochem Soc, 1998; 145: 2186
[1] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[2] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[3] Rongyao MA,Changgang WANG,Xin MU,Xin WEI,Lin ZHAO,Junhua DONG,Wei KE. Influence of Hydrostatic Pressure on Corrosion Behavior of Ultrapure Fe[J]. 金属学报, 2019, 55(7): 859-874.
[4] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[5] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[6] Libao YU, Maocheng YAN, Jian MA, Minghao WU, Yun SHU, Cheng SUN, Jin XU, Changkun YU, Yongchang QING. Sulfate Reducing Bacteria Corrosion of Pipeline Steel inFe-Rich Red Soil[J]. 金属学报, 2017, 53(12): 1568-1578.
[7] MA Guangcai, FU Huameng, WANG Zheng, XU Qingliang, ZHANG Haifeng. STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES[J]. 金属学报, 2014, 50(9): 1087-1094.
[8] ZHU Chuanlin, ZHANG Junbao, CHENG Congqian, ZHAO Jie. INFLUENCE OF DEFORMATION TEMPERATURE ON HOT DEFORMATION BEHAVIOR OF COLD SPRAYED 304 STAINLESS STEEL COATING MATERIAL[J]. 金属学报, 2013, 49(10): 1275-1280.
[9] . GRAIN BOUNDARY PLANE DISTRIBUTIONS IN 304 STEEL ANNEALED AT HIGH TEMPERATURE AFTER A PARALLEL PROCESSING OF MULTIPLE FORGING AND DIRECT ROLLING[J]. 金属学报, 2012, 48(8): 895-906.
[10] HU Changliang XIA Shuang LI Hui LIU Tingguang ZHOU Bangxin CHEN Wenjue. EFFECT OF GRAIN BOUNDARY NETWORK ON THE INTERGRANULAR STRESS CORROSION CRACKING OF 304 STAINLESS STEEL[J]. 金属学报, 2011, 47(7): 939-945.
[11] CHENG Xiaojuan WANG Hong KANG Guozheng DONG Yawei LIU Yujie. STUDY ON STRAIN--INDUCED MARTENSITE TRANSFORMATION OF 304 STAINLESS STEEL DURING RATCHETING DEFORMATION[J]. 金属学报, 2009, 45(7): 830-834.
[12] Gaofei Liang. IN-SITU OBSERVATION OF δ→γ PHASE TRANSFORMATION OF AN AISI304 STAINLESS STEEL[J]. 金属学报, 2007, 43(2): 119-124 .
[13] FANG Xiao-Ying. 3n special boundary distributions of the cold-rolled and annealed 304 stainless steel[J]. 金属学报, 2007, 43(12): 1239-1244 .
[14] Gaofei Liang. IN-SITU OBSERVATION OF NUCLEATION AND GROWTH OF HIGH-TEMPERATURE δ PHASE DURING AUSTENITE → FERRITE+LIQUID PHASE TRANSFORMATION IN AN AISI304 STAINLESS STEEL[J]. 金属学报, 2006, 42(8): 805-809 .
[15] KAN Qianhua; KANG Guozheng; ZHANG Juan; LIU Yujie. EXPERIMENTAL STUDY ON NON-PROPORTIONALLY MULTIAXIAL TIME-DEPENDENT CYCLIC DEFORMATIONS OF SS304 STAINLESS STEEL AT HIGH TEMPERATURE[J]. 金属学报, 2005, 41(9): 963-968 .
No Suggested Reading articles found!