Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 250-256    DOI: 10.3724/SP.J.1037.2011.00721
论文 Current Issue | Archive | Adv Search |
QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY
CAO Furong 1, DING Hua 1, WANG Zhaodong 2, LI Yinglong 1, GUAN Renguo 1, CUI Jianzhong 3
1. College of Materials and Metallurgy, Northeastern University, Shenyang 110819
2. State Key Lab of Rolling and Tandem Rolling Automation, Northeastern University, Shenyang 110819
3. Key Lab of Materials Electromagnetic Process Research, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

CAO Furong DING Hua WANG Zhaodong LI Yinglong GUAN Renguo CUI Jianzhong . QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY. Acta Metall Sin, 2012, 48(2): 250-256.

Download:  PDF(677KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  1.2 mm thickness sheets of ultralight Mg–11Li–3Zn alloy with a density of 1.43 g/cm3 was obtained by casting and rolling, the elongation to failure is 200% at 573K with 1.67×10−2 s−1 tensile rate, which indicates high strain rate quasi–superplasticity. Significant dynamic recrystallization and grain refinement occur at 573 K and 1.67×10−2 s−1 under which the grain size turns from initial 27 μm into 9 μm, the stress exponent is 4.4 and the activation energy for flow is 112.6 kJ/mol. It is considered that the deformation mechanism of Mg–11Li–3Zn alloy at 573 K and 1.67×10−2 s−1 is dislocation climb controlled by lattice diffusion.
Key words:  Mg–Li–Zn alloy      quasi-superplasticity      mechanical property      microstructure      deformation mechanism     
Received:  18 November 2011     
ZTFLH: 

TG113

 
  TG146.2+2

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50974038 and 51034002)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00721     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/250

[1] Counts W A, Friak M, Raabe D, Neugebauer J. Acta Mater, 2009; 57: 69

[2] Cao F R, Lei F, Cui J Z,Wen J L. Acta Metall Sin, 1999; 35: 770

(曹富荣, 雷方, 崔建忠, 温景林. 金属学报, 1999; 35: 770)

[3] Cao F R, Guan R G, Ding H, Li Y L, Zhou G, Cui J Z. Acta Metall Sin, 2010; 46: 715

(曹富荣, 管仁国, 丁 桦, 李英龙, 周舸, 崔建忠. 金属学报, 2010; 46: 715)

[4] Nayeb–Hashemi A A, Clark J B, Pelton A D. Bull Alloy Phase Diagram, 1984; 5: 365

[5] Raynor G V. The Physical Metallurgy of Magnesium and Its Alloys. London: Pergamon Press, 1959: 265

[6] Metenier P, Gonzalez–Doncel G, Ruano O A, Wolfenstine J, Sherby O D. Mater Sci Eng, 1990; A125: 195

[7] Fujitani W, Furushiro N, Hori S, Kumeyama K. J Jpn Ins Light Met, 1992; 42: 125

[8] Higashi K, Wolfenstine J. Mater Letter, 1991; 10: 329

[9] Kojima Y, Inoue M, Tanno O. J Japan Inst Metal, 1990; 54: 354

[10] Cao F R, Ding H, Li Y L, Zhou G, Cui J Z. Mater Sci Eng, 2010; A527: 2335

[11] Dong S L, Imai T, Lim SW, Kanetake N, Saito N. J Mater Sci, 2007; 42: 5296

[12] Liu X H, Zhan H B, Gu S H, Qu Z K, Wu R Z, Zhang M L. Mater Sci Eng, 2010; A528: 6157

[13] Furui M, Kitamura H, Anada H, Langdon T G. Acta Mater, 2007; 55: 1083

[14] Ashby M F. Acta Metall, 1972; 20: 887

[15] Mohamed F A, Langdon T G. Metall Trans, 1974; 5A: 2339

[16] Ruano O A, Wadsworth J, Sherby O D. J Mater Sci, 1985; 20: 3735

[17] Sajjadi S A, Nategh S. Mater Sci Eng, 2001; A307: 158.

[18] Tanaka H, Yamada T, Sato E, Jimbo I. Scr Mater, 2006; 54: 121

[19] Chung S W, Higashi K, Kim W J. Mater Sci Eng, 2004; A372: 15

[20] Oikawa H, Langdon T G. in: Wilshire B, Evans R W eds., Creep Behavior of Crystalline Solids. UK: Pineridge Press Limited, 1985: 64

[21] Woo S S, Kim Y R, Shin D H, Kim W J. Scr Mater, 1997; 37: 1351

[22] Yavari P, Langdon T G. Acta Metall, 1982; 30: 2181

[23] Langdon T G. Acta Metall Mater, 1994; 42: 2437

[24] Weinberg A F, Levinson D W, Rostoker W. Trans ASM, 1956; 48: 855

[25] Syn C K, Lesuer D R, Sherby O D. Mater Sci Eng, 1996; A201: 201

[26] Ma A B, Nishida Y, Saito N, Shigematsu I, Lim S W. Mater Sci Technol, 2003; 19: 1642

[27] Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K. Mater Sci Eng, 2005; A407: 53

[28] Li Y, Langdon T G. Acta Mater, 1998; 46: 1143

[29] Cao F R. PhD Thesis, Northeastern University, Shenyang, 1999

(曹富荣. 东北大学博士学位论文, 沈阳, 1999)

[30] Friedel J. Dislocations. Oxford: Pergamon Press, 1964: 331

[31] Wang J S, Nix W D. Acta Metall, 1986; 34: 545

[32] Fuentes–Samaniego R, Nix W D. Scr Metall, 1981; 15: 15

[33] Somekawa H, Mukai T. Scr Metall, 2007; 57: 1008

[34] Wolfenstine J, Gonzalez–Docel G, Sherby O D. J Mater Res, 1990; 5: 1359

[35] Lee B H, Shin K S, Lee C S. Mater Sci Forum, 2005; 475–479: 2927

[36] Zhang B, Mynors D J, Mugarra A, Ostolaza K. Mater Sci Forum, 2004; 447–448: 171

[37] Kassner M E, Perez–Prado M T. Prog Mater Sci, 2000; 45: 1

[38] Nieh T G, Wadsworth J, Sherby O D. Superplasticity in Metals and Ceramics. Cambridge: Cambridge University Press, 1997: 34

[39] Chow K K, Chan K C. Key Eng Mater, 2000; 177–180: 601

[40] Langdon T G. J Mater Sci, 2009; 44: 5998

[41] Mohri T, Mabuchi M, Nakamura M, Asahina T, Iwasaki H, Aizawa T, Higashi K. Mater Sci Eng, 2000; A290: 139

[42] Hirai K, Somekawa H, Takigawa Y, Higashi K. Scr Mater, 2007; 56: 237

[43] Cadek J. Creep In Metallic Materials. Holland: Elsevier, 1988: 161

[44] Mishra R S, Stolyarov V V, Echer C, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2001; A298: 44

[45] Kawasaki M, Kubota K, Higashi K, Langdon T G. Mater Sci Eng, 2006; A429: 334

[46] Watanabe H, Mukai T, Kohzu M, Tanabe S, Higashi K. Acta Mater, 1999; 47: 3753
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[11] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!