|
|
QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY |
CAO Furong 1, DING Hua 1, WANG Zhaodong 2, LI Yinglong 1, GUAN Renguo 1, CUI Jianzhong 3 |
1. College of Materials and Metallurgy, Northeastern University, Shenyang 110819
2. State Key Lab of Rolling and Tandem Rolling Automation, Northeastern University, Shenyang 110819
3. Key Lab of Materials Electromagnetic Process Research, Ministry of Education, Northeastern University, Shenyang 110819 |
|
Cite this article:
CAO Furong DING Hua WANG Zhaodong LI Yinglong GUAN Renguo CUI Jianzhong . QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY. Acta Metall Sin, 2012, 48(2): 250-256.
|
Abstract 1.2 mm thickness sheets of ultralight Mg–11Li–3Zn alloy with a density of 1.43 g/cm3 was obtained by casting and rolling, the elongation to failure is 200% at 573K with 1.67×10−2 s−1 tensile rate, which indicates high strain rate quasi–superplasticity. Significant dynamic recrystallization and grain refinement occur at 573 K and 1.67×10−2 s−1 under which the grain size turns from initial 27 μm into 9 μm, the stress exponent is 4.4 and the activation energy for flow is 112.6 kJ/mol. It is considered that the deformation mechanism of Mg–11Li–3Zn alloy at 573 K and 1.67×10−2 s−1 is dislocation climb controlled by lattice diffusion.
|
Received: 18 November 2011
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.50974038 and 51034002) |
[1] Counts W A, Friak M, Raabe D, Neugebauer J. Acta Mater, 2009; 57: 69[2] Cao F R, Lei F, Cui J Z,Wen J L. Acta Metall Sin, 1999; 35: 770(曹富荣, 雷方, 崔建忠, 温景林. 金属学报, 1999; 35: 770)[3] Cao F R, Guan R G, Ding H, Li Y L, Zhou G, Cui J Z. Acta Metall Sin, 2010; 46: 715(曹富荣, 管仁国, 丁 桦, 李英龙, 周舸, 崔建忠. 金属学报, 2010; 46: 715)[4] Nayeb–Hashemi A A, Clark J B, Pelton A D. Bull Alloy Phase Diagram, 1984; 5: 365[5] Raynor G V. The Physical Metallurgy of Magnesium and Its Alloys. London: Pergamon Press, 1959: 265[6] Metenier P, Gonzalez–Doncel G, Ruano O A, Wolfenstine J, Sherby O D. Mater Sci Eng, 1990; A125: 195[7] Fujitani W, Furushiro N, Hori S, Kumeyama K. J Jpn Ins Light Met, 1992; 42: 125[8] Higashi K, Wolfenstine J. Mater Letter, 1991; 10: 329[9] Kojima Y, Inoue M, Tanno O. J Japan Inst Metal, 1990; 54: 354[10] Cao F R, Ding H, Li Y L, Zhou G, Cui J Z. Mater Sci Eng, 2010; A527: 2335[11] Dong S L, Imai T, Lim SW, Kanetake N, Saito N. J Mater Sci, 2007; 42: 5296[12] Liu X H, Zhan H B, Gu S H, Qu Z K, Wu R Z, Zhang M L. Mater Sci Eng, 2010; A528: 6157[13] Furui M, Kitamura H, Anada H, Langdon T G. Acta Mater, 2007; 55: 1083[14] Ashby M F. Acta Metall, 1972; 20: 887[15] Mohamed F A, Langdon T G. Metall Trans, 1974; 5A: 2339[16] Ruano O A, Wadsworth J, Sherby O D. J Mater Sci, 1985; 20: 3735[17] Sajjadi S A, Nategh S. Mater Sci Eng, 2001; A307: 158.[18] Tanaka H, Yamada T, Sato E, Jimbo I. Scr Mater, 2006; 54: 121[19] Chung S W, Higashi K, Kim W J. Mater Sci Eng, 2004; A372: 15[20] Oikawa H, Langdon T G. in: Wilshire B, Evans R W eds., Creep Behavior of Crystalline Solids. UK: Pineridge Press Limited, 1985: 64[21] Woo S S, Kim Y R, Shin D H, Kim W J. Scr Mater, 1997; 37: 1351[22] Yavari P, Langdon T G. Acta Metall, 1982; 30: 2181[23] Langdon T G. Acta Metall Mater, 1994; 42: 2437[24] Weinberg A F, Levinson D W, Rostoker W. Trans ASM, 1956; 48: 855[25] Syn C K, Lesuer D R, Sherby O D. Mater Sci Eng, 1996; A201: 201[26] Ma A B, Nishida Y, Saito N, Shigematsu I, Lim S W. Mater Sci Technol, 2003; 19: 1642[27] Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K. Mater Sci Eng, 2005; A407: 53[28] Li Y, Langdon T G. Acta Mater, 1998; 46: 1143[29] Cao F R. PhD Thesis, Northeastern University, Shenyang, 1999(曹富荣. 东北大学博士学位论文, 沈阳, 1999)[30] Friedel J. Dislocations. Oxford: Pergamon Press, 1964: 331[31] Wang J S, Nix W D. Acta Metall, 1986; 34: 545[32] Fuentes–Samaniego R, Nix W D. Scr Metall, 1981; 15: 15[33] Somekawa H, Mukai T. Scr Metall, 2007; 57: 1008[34] Wolfenstine J, Gonzalez–Docel G, Sherby O D. J Mater Res, 1990; 5: 1359[35] Lee B H, Shin K S, Lee C S. Mater Sci Forum, 2005; 475–479: 2927[36] Zhang B, Mynors D J, Mugarra A, Ostolaza K. Mater Sci Forum, 2004; 447–448: 171[37] Kassner M E, Perez–Prado M T. Prog Mater Sci, 2000; 45: 1[38] Nieh T G, Wadsworth J, Sherby O D. Superplasticity in Metals and Ceramics. Cambridge: Cambridge University Press, 1997: 34[39] Chow K K, Chan K C. Key Eng Mater, 2000; 177–180: 601[40] Langdon T G. J Mater Sci, 2009; 44: 5998[41] Mohri T, Mabuchi M, Nakamura M, Asahina T, Iwasaki H, Aizawa T, Higashi K. Mater Sci Eng, 2000; A290: 139[42] Hirai K, Somekawa H, Takigawa Y, Higashi K. Scr Mater, 2007; 56: 237[43] Cadek J. Creep In Metallic Materials. Holland: Elsevier, 1988: 161[44] Mishra R S, Stolyarov V V, Echer C, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2001; A298: 44[45] Kawasaki M, Kubota K, Higashi K, Langdon T G. Mater Sci Eng, 2006; A429: 334[46] Watanabe H, Mukai T, Kohzu M, Tanabe S, Higashi K. Acta Mater, 1999; 47: 3753 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|