Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 245-249    DOI: 10.3724/SP.J.1037.2011.00687
论文 Current Issue | Archive | Adv Search |
DECONVOLUTION OF THE "ZERO PROFILE" FROM THE DIFFUSION PROFILE MEASURED BY SECONDARY ION MASS SPECTROSCOPY
WANG Haili, WANG Zhenbo, LU Ke
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Haili WANG Zhenbo LU Ke. DECONVOLUTION OF THE "ZERO PROFILE" FROM THE DIFFUSION PROFILE MEASURED BY SECONDARY ION MASS SPECTROSCOPY. Acta Metall Sin, 2012, 48(2): 245-249.

Download:  PDF(510KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The depth profile measured by secondary ion mass spectroscopy is influenced by factors such as the atomic mixing caused by ion injection, the crater edge, the crystallographic orientation of grains and the surface roughness etc., resulting in the deviation of the measured profile from the real distribution of the solute atoms. A depth profile measured before diffusion annealing or the "zero profile"is a comprehensive characterization of all the factors that influence the depth profile after annealing. In the present study, a mathematic method using Fourier serials to effectively deconvolute the real profile from the measured profile and"zero profile"is proposed. And the effects of "zero profile" on the diffusion properties of Zn in a coarse grained Cu and a nanostructured Cu produced by dynamic plastic deformation (DPD) at liquid nitrogen temperature (LNT) are analyzed with the above method.
Key words:  secondary ion mass spectroscopy      depth profile      zero profile      diffusion      dynamic plastic deformation     
Received:  04 November 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.50890171), National Basic Research Program of China (No.2012CB932201) and International Science & Technology Cooperation Program of China (No.2010DFB54010)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00687     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/245

[1] Smith N S, Dowsett M G, McGregor B. In: Benninghoven A, Hagenhoff B, Werner H W, eds.. Proc Secondary Ion Mass Spectrometry X, Chichester: John Wiley & Sons, 1997: 363

[2] Murday J S. In: Benninghoven A, Bertrand P, Migeon H N, Werner H W, eds.. Proc Secondary Ion Mass Spectrometry XII, Amsterdam: Elsevier, 2000: 3

[3] Mojzsis S J, Arrhenius G, Mckeegan K D. Nature, 1996; 384: 55

[4] Ratner B D. In: Benninghoven A, Hagenhoff B, Werner H W, eds., Proc Secondary Ion Mass Spectrometry X, Chichester: John Wiley & Sons, 1997: 11

[5] Cha L Z, Gui D, Zhu Y Z. Chin J Vac Sci Technol, 2001; 21: 129

(查良镇, 桂 东, 朱怡峥. 真空科学和技术学报, 2001; 21: 129)

[6] Kaur I, Mishin Y, GustW. Fundamentals of Grain and Interphase Boundary Diffusion. 3rd ed. West Sussex, England: John Wiley & Sons, 1995: 470

[7] Amouyal Y, Divinski S V, Estrin Y, Rabkin E. Acta Mater, 2007; 55: 5968

[8] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230

[9] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771

[10] Stokes A R. Proc of the Physical Society, 1948; 61: 382

[11] Yamamoto Y, Kajihara M. Acta Mater, 1999; 47: 1195

[12] Goukon N, Ikeda T, Kajihara M. Acta Mater, 2000; 48: 2959

[13] Hassner A. Wiss Z Tech Hochsch, Karl–Marx–Stadt, 1977; 19: 619

[14] Harrison L. Trans Faraday Soc, 1961; 57: 597

[15] Wang H L, Wang Z B, Lu K. Acta Mater, 2011; 59: 1818

[16] Borisov V T, Golikov V M, Scherbedinskiy G V. Phys Met Metall, 1964; 17: 80

[17] Gupta D. Metall Trans, 1977; 8A: 1431

[18] Gupta D. Interface Sci, 2003; 11: 7

[19] Murr L E. Interfacial Phenomena in Metals and Alloys. MA: Addison–Wesley, 1975: 131
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[4] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[7] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[8] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[9] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[10] LI Juan, ZHAO Honglong, ZHOU Nian, ZHANG Yingzhe, QIN Qingdong, SU Xiangdong. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel[J]. 金属学报, 2021, 57(12): 1567-1578.
[11] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[12] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
[13] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[14] DING Wen, WANG Xiaojing, LIU Ning, QIN Liang. Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy[J]. 金属学报, 2020, 56(8): 1084-1090.
[15] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
No Suggested Reading articles found!