Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1188-1194    DOI: 10.3724/SP.J.1037.2011.00262
论文 Current Issue | Archive | Adv Search |
QUANTITATIVE RELATIONSHIPS BETWEEN MICROSTRUCTURE PARAMETERS AND MECHANICAL PROPERTIES OF ULTRAFINE CEMENTED CARBIDES
ZHAO Shixian, SONG Xiaoyan, LIU Xuemei, WEI Chongbin, WANG Haibin, GAO Yang
Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
Cite this article: 

ZHAO Shixian SONG Xiaoyan LIU Xuemei WEI Chongbin WANG Haibin GAO Yang. QUANTITATIVE RELATIONSHIPS BETWEEN MICROSTRUCTURE PARAMETERS AND MECHANICAL PROPERTIES OF ULTRAFINE CEMENTED CARBIDES. Acta Metall Sin, 2011, 47(9): 1188-1194.

Download:  PDF(1009KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructures of ultrafine WC-Co cemented carbides were characterized and analyzed by stereological methods. The quantitative relationships between the mechanical properties and microstructure parameters, such as the mean grain size dWC, mean free path LCo and contiguity CWC-WC, were obtained. The calculated results of mechanical properties agree well with the experimental measurements. With the equivalent contiguity, the Vickers hardness of ultrafine cemented carbides has linear relationships with dWC-1/2 and LCo-1/2 and the fracture toughness KIC has deterministic relationships with dWC-1/2 and LCo-1/2, respectively. With certain Co content and mean grain size, the transverse rupture strength decreases with the increase of contiguity. Especially when the contiguity is above 0.5, the strength decreases obviously. The present results may be used as criteria to optimize the microstructure and to improve mechanical properties of ultrafine cemented carbides.
Key words:  ultrafine cemented carbide      stereological characterization      microstructure parameter      mechanical property     
Received:  25 April 2011     
ZTFLH: 

TB125.3

 
Fund: 

Supported by Special Preliminary Study Item of National Basic Research Program of China (No.2011CB612207), Beijing Natural Science Foundation (No.2112006) and Fund of State Key Laboratory of Powder Metallurgy of Central South University

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00262     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1188

[1] Gurland J. Trans TMS, 1963; 227: 1146

[2] Huang P Y. Principle of Powder Metallurgy. 2nd Ed., Beijing: Metallurgical Industry Press, 1997: 425

(黄培云. 粉末冶金原理. 第二版, 北京: 冶金工业出版社, 1997: 425)

[3] Hayashi K, Suzuki H. J Jpn Inst Metal, 1974; 38: 11

[4] Liu S R. Cem Carbides, 2002; 19: 129

(刘寿荣. 硬质合金, 2002; 19, 129)

[5] Sun B Q. Rare Met Cem Carbides, 2004; 32(1): 46

(孙宝琦. 稀有金属与硬质合金, 2004; 32(1): 46)

[6] Sun B Q. Rare Met Cem Carbides, 2004; 32(2): 29

(孙宝琦. 稀有金属与硬质合金, 2004; 32(2): 29)

[7] Sun B Q. Rare Met Cem Carbides, 2004; 32(3): 40

(孙宝琦. 稀有金属与硬质合金, 2004; 32(3): 40)

[8] Sun B Q. Rare Met Cem Carbides, 2004; 32(4): 33

(孙宝琦. 稀有金属与硬质合金, 2004; 32(4): 33)

[9] Shi X L, Shao G Q, Duan X L, Zhang W F, Yuan R Z. Rare Met Mater Eng, 2005; 34: 1283

(史晓亮, 邵刚勤, 段兴龙, 张卫丰, 袁润章. 稀有金属材料与工程, 2005; 34: 1283)

[10] Xie H, Xiao Y F, He Y H, Feng P, Huang Z Q. China Tungsten Ind, 2006; 21(6): 27

(谢宏, 肖逸锋, 贺跃辉, 丰 平, 黄自谦. 中国钨业, 2006; 21(6): 27)

[11] Liu X M, Song X Y, Zhang J X, Zhao S X. Mater Sci Eng, 2008; A488: 1

[12] Lin C G. Rare Met, 2004; 28: 762

(林晨光. 稀有金属, 2004; 28: 762)

[13] Zhang L, Chen S, Liu G, Yang G B, Huang Z L, Huang B Y, Zhang C F. Mater Rev, 2005; 19(11): 4

(张立, 陈述, 刘刚, 杨贵彬, 黄泽兰, 黄伯云, 张传福. 材料导报, 2005; 19(11): 4)

[14] Liu G Q. Chin J Stereol Image Anal, 1996; 1(1): 96

(刘国权. 中国体视学与图像分析, 1996; 1(1): 96)

[15] Song X Y, Liu G Q, He Y Z. Prog Nat Sci, 1998; 8: 92

[16] Song X Y, Liu G Q. J Mater Sci, 1999, 34: 2433

[17] Luyckx S, Love A. Int J Refract Met Hard Mater, 2006; 24: 75

[18] Golovchan V T, Litoshenko N V. Int J Refract Met Hard Mater, 2003; 21: 241

[19] Laugier M T. J Mater Sci Lett, 1985; 4: 263

[20] Chernyavskii K S, Travushkin G G. Problemy Prochnosti, 1980; 4: 11

[21] Song X Y, Zhao S X, Liu X M, Wei C B, Wang H B, Gao Y, Liu G Q. Chin J Stereol Image Anal, 2011; 16: 131

(宋晓艳, 赵世贤, 刘雪梅, 魏崇斌, 王海滨, 高杨, 刘国权. 中国体视学与图像分析, 2011; 16: 131)

[22] Zhao S X, Song X Y, Zhang J X, Liu X M. Acta Metall Sin, 2007; 43: 107

(赵世贤, 宋晓艳, 张久兴, 刘雪梅. 金属学报, 2007; 43: 107)

[23] Zhao S X, Song X Y, Zhang J X, Liu X M. Mater Sci Eng, 2008; A473: 323

[24] Zhao S X, Song X Y, Wang M S, Liu X M, Zhang J X. Int J Refract Met Hard Mater, 2009; 27: 1014

[25] Lee H C, Gurland J. Mater Sci Eng, 1978; 33: 125

[26] Xu Z H, Agren J. Mater Sci Eng, 2004; A386: 262

[27] Liu S R. Trans Mater Heat Treat, 2005; 26: 62

(刘寿荣. 材料热处理学报, 2005; 26: 62)

[28] Liu S R. Cem Carbides, 2003; 20(2): 65

(刘寿荣. 硬质合金, 2003; 20(2): 65)

[29] Liu S R. Phy Test Chem Anal, 2003, 39(2): 70

(刘寿荣. 理化检验--物理分册, 2003; 39(2): 70)

[30] Chermant J L, Coster M. J Mater Sci, 1979; 14: 509

[31] Fang Z Z. Int J Refract Met Hard Mater, 2005; 23: 119

[32] Liu B H, Zhang Y, Ouyang S X. Mater Chem Phy, 2000; 62: 35
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
No Suggested Reading articles found!