Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1270-1276    DOI: 10.3724/SP.J.1037.2011.00154
论文 Current Issue | Archive | Adv Search |
EFFECTS OF THERMAL MECHANICAL TREATMENT ON THE MICROSTRUCTURES AND HARDNESS OF AN Al–Zn–Mg–Cu ALLOY PLATE
ZHANG Yunya 1,2, DENG Yunlai 1,2, WAN Li 1,2, ZHANG Xinming 1,2
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083
Cite this article: 

ZHANG Yunya DENG Yunlai WAN Li ZHANG Xinming. EFFECTS OF THERMAL MECHANICAL TREATMENT ON THE MICROSTRUCTURES AND HARDNESS OF AN Al–Zn–Mg–Cu ALLOY PLATE. Acta Metall Sin, 2011, 47(10): 1270-1276.

Download:  PDF(1387KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of thermal mechanical treatment (TMT: solution–quenching–precipitation–rolling) on the morphology and the amount of the precipitates in an Al–7.81Zn–1.81Mg–1.62Cu alloy plate and the effects of those particles on the microstructures, textures and hardness have been studied. During TMT, MgZn2 particles with nano/submicron scales significantly inhibit the migration of sub–grain/grain boundaries but would not induce particle simulated nucleation (PSN) recrystallization. An appropriate TMT process results in the remarkable diminish of recrystallization and increases Vickers hardness by 15%.
Key words:  thermal mechanical treatment      Al–Zn–Mg–Cu alloy      MgZn2 phase      recrystallization      texture     
Received:  23 March 2011     
Fund: 

Supported by National Basic Research Program of China (No.2010CB731700)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00154     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1270

[1] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775

[2] Chakrabarti D J, Liu J, Sawtell R R, Venema G B. Mater Forum, 2004; 28: 969

[3] Liu J. Mater Sci Forum, 2006; 519: 1233

[4] Senkov O N, Bhat R B, Senkova S V, Schloz J D. Metall Mater Trans, 2004; 36: 2115

[5] Hideo Y, Yoshio B. Trans Jpn Inst Met, 1982; 23: 620

[6] Robson J D. Mater Sci Eng, 2002; A338: 219

[7] Robson J D, Prangnel P B. Acta Mater, 2001; 49: 599

[8] Morere B, Maurice C, Driver J, Shahani R. Mater Sci Forum, 1996; 217–222: 517

[9] Deng Y L, Wan L, Zhang Y, Zhang X M. J Alloys Compd, 2010; 498: 88

[10] Xiong C X, Wan L, Deng Y L, Zhang X M. J Cent China Univ (Sci Technol), 2010; 41: 465

(熊创贤, 万里, 邓运来, 张新明. 中南大学学报(自然科学版), 2010; 41: 465)

[11] Bunge H J. Texture Analysis in Materials Science. London: Butterworths, 1982: 44

[12] L¨ucke K, Pospiech J, Virnich K H, Jura J. Acta Metall, 1981; 29: 167

[13] Hu H E, Zhen L, Yang L, Shao W Z, Zhang B Y. Mater Sci Eng, 2008; A488: 64

[14] Zhen L, Hua H E, Wang X Y, Zhang B Y, Shao W Z. J Mater Process Technol, 2009; 209: 754

[15] Li X Z, Hansen V, Gjonnes J, Wallenberg L R. Acta Metall, 1999; 47: 2651

[16] Komura Y, Tokunaga K. Acta Crystallogr, 1980; B36: 1548

[17] Stiller K, Warren P J, Hansen V, Angenete J, Gjonnes J. Mater Sci Eng, 1999; A270: 55

[18] Engler O, Sachot E, Ehrstrom J C, Reeves A, Shahani R. Mater Sci Technol, 1996; 12: 717

[19] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219

[20] Humphreys F J, Hatherly M. Recrystallization and Related Phenomena. 2nd Ed., Oxford, London: Pergamon Press, 2004: 86

[21] Zhang X M, Deng Y L, Liu Y, Tang J G, Zhou Z P. Acta Metall Sin, 2005; 41: 947

(张新明, 邓运来, 刘瑛, 唐建国, 周卓平.金属学报, 2005; 41: 947)

[22] Deng Y L, Zhang X M, Liang X, Zhang Y. Adv Mater Res, 2007; 15–17: 929

[23] Humphreys F J. Met Sci, 1979; 13: 136

[24] Ørsund R, Nes E. Scr Metall, 1988; 22: 665
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[7] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[9] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[10] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[11] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[12] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[13] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[14] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[15] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
No Suggested Reading articles found!