Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1263-1269    DOI: 10.3724/SP.J.1037.2011.00136
论文 Current Issue | Archive | Adv Search |
CHARACTERIZATION OF TiAl PRE–ALLOYED POWDER AND ITS DENSIFICATION MICROSTRUCTURE
WANG Gang, ZHENG Zhuo, CHANG Litao, XU Lei, CUI Yuyou, YANG Rui
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Gang ZHENG Zhuo CHANG Litao XU Lei CUI Yuyou YANG Rui. CHARACTERIZATION OF TiAl PRE–ALLOYED POWDER AND ITS DENSIFICATION MICROSTRUCTURE. Acta Metall Sin, 2011, 47(10): 1263-1269.

Download:  PDF(1081KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  TiAl pre–alloyed powder (nominal composition Ti–47Al–2Cr–2Nb–0.2W–0.15B, atomic fraction, %) was produced by electrode induction melting gas atomization (EIGA) technique. The average diameter is 120.7 μm, and the distribution of the powder diameter follows Gaussian distribution. The phase constitution is a function of particle diameter. The amount of the γ phase increases with powder diameter increasing, the finest powder consists of predominantly α2 phase. The α2 phase in the powder was transformed into γ phase after annealing at temperatures higher than 500 ℃. Local coarsening was observed in the microstructure of TiAl compact duo to the microsegregation of elements in the powder. The XPS result indicated that the outer layer of the TiAl pre–alloyed particle consists of a thin layer of Al2O3 and TiO2.
Key words:  TiAl      gas atomization      metastable phase      microsegregation     
Received:  16 March 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00136     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1263

[1] Dimiduk D M. Mater Sci Eng, 1999; A263: 281

[2] Thomas M, Berteaux O, Popoff F, Bacos M P, Morel A, Passilly B, Ji V. Intermetallics, 2006; 14: 1143

[3] Lu X, Zhao L M, Qu X H. Mater Rev, 2006; 20(8): 69

(路新, 赵丽明, 曲选辉. 材料导报, 2006; 20(8): 69)

[4] Gouma P I, Saunders N, Loretto M H. Mater Sci Technol, 1996; 12: 823

[5] Gerling R, Clemens H, Schimansky F P. Adv Eng Mater, 2004; 6: 23

[6] Unal R. J Mater Process Technol, 2006; 180: 291

[7] Wegmann G, Gerling R, Schimansky F P. Acta Mater, 2003; 51: 741

[8] Clemens H. Z Metallk, 1995; 86: 814

[9] Zhang Y W, Shangguang Y H. Powder Metall Ind, 2004; 14(6): 30

(张义文, 上官永恒. 粉末冶金工业, 2004; 14(6): 30)

[10] Miles T E, Rhodes J F. In: Mehrabian R, Kear  B H, Cohen M, eds., Rapid Solidification Processing: Principles and Technologies. Baton Rouge: Claitor’s Pub, 1978: 347

[11] Cahn R W. Mater Sci Eng, 2002; A324: 1

[12] Wang P, Viswanathan G B, Vasudevan V K. Metall Mater Trans, 1992; 23A: 690

[13] Fischer F D, Cha L, Dehm G, Clemens H. Intermetallics, 2010; 18: 972

[14] Adams A G, Rahaman M N, Dutton R E. Mater Sci Eng, 2008; A477: 137

[15] Rao G A, Srinivas M, Sarma D S. Mater Sci Eng, 2006; A435–436: 84
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[4] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[7] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[8] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[9] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[10] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[11] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[12] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[13] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[14] YAO Meiyi,ZHANG Xingwang,HOU Keke,ZHANG Jinlong,HU Pengfei,PENG Jianchao,ZHOU Bangxin. The Initial Corrosion Behavior of Zr-0.75Sn-0.35Fe-0.15Cr Alloy in Deionized Water at 250 ℃[J]. 金属学报, 2020, 56(2): 221-230.
[15] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
No Suggested Reading articles found!