Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 469-474    DOI: 10.3724/SP.J.1037.2010.00546
论文 Current Issue | Archive | Adv Search |
TANG Ruihe1), YANG Zhigang1), ZHANG Chi1), YANG Bai2), LIU Xiaofang2), YU Ronghai2)
1) Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) School of Materials Science and Engineering, Beihang University, Beijing 100191
Download:  PDF(1031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Co-C nanocomposite thin films with a Co atomic content of 13.0% were fabricated onto Si (100) substrates by magnetron co-sputtering technique. Post annealing was carried out in vacuum at annealing temperature ranging from 473 K to 773 K for 30 min. TEM images indicate that the Co nanoparticles are dispersed uniformly in an amorphous carbon matrix for the as-deposited samples, and Co particle size is in a range of 1.5-3.0 nm. After annealing at 673 K, the average Co particle size is enlarged distinctly. Magnetization hysteresis loops reveal that the as-deposited thin films show low magnetization. As annealing temperature is increased, both magnetization and coercivity are enhanced significantly. The samples annealed at 673 K and 773 K show ferromagnetic behaviors at low temperature, and superparamagnetic behaviors at room temperature, which are characteristic magnetic features for granular system. A negative magnetoresistance (MR) of 1.33% is observed for the as-deposited Co-C thin films at 4.2 K in the applied magnetic field of 3980 kA/m. The MR value decreases with increasing annealing temperature. Resistance (R) versus temperature (T) curves exhibit a good linear relationship of lnR-T-1/4 at a broad low temperature range, suggesting that the conduction in Co-C nanocomposite thin films follows the variable range hopping transport mechanism.
Key words:  Co-C nanocomposite thin film      annealing      microstructure      magnetotransport property      magnetic property     
Received:  13 October 2010     

Supported by National Natural Science Foundation of China (Nos.50771058 and 50729101) and the National Major Fundamental Research Program of China (No.2010CB934602)

Corresponding Authors:  YANG Zhigang     E-mail:

Cite this article: 


URL:     OR

[1] Berkowitz A E, Mitchell J R, Carey M J, Young A P, Zhang S, Spada F E, Parker F T, Hutten A, Thomas G. Phys Rev Lett, 1992; 68: 3745

[2] Xiao J Q, Jiang J S, Chien C L. Phys Rev Lett, 1992; 68: 3749

[3] Galli G, Martin R M, Car R, Parrinello M. Phys Rev Lett, 1989; 62: 555

[4] Galli G, Martin R M, Car R, Parrinello M. Phys Rev, 1990; 42B: 7470

[5] McCulloch D G, McKenzie D R, Goringe C M. Phys Rev, 2000; 61B: 2349

[6] Haerle R, Riedo E, Pasquarello A, Baldereschi A. Phys Rev, 2001; 65B: 045101

[7] Yu M, Liu Y, Sellmyer D J. J Appl Phys, 1999; 85: 4319

[8] Mi W B, Guo L, Jiang E Y, Li Z Q, Wu P, Bai H L. J Phys, 2003; 36D: 2393

[9] Babonneau D, Briatico J, Petroff F, Cabioch T, Naudon A. J Appl Phys, 2000; 87: 3432

[10] Mi W B, Li Z Q, Wu P, Jiang E Y, Bai H L, Hou D L, Li X L. J Appl Phys, 2005; 97: 043903

[11] Fonseca F C, Ferlauto A S, Alvarez F, Goya G F, Jardim R F. J Appl Phys, 2005; 97: 044313

[12] Wang X C, Mi W B, Jiang E Y, Bai H L. Appl Phys Lett, 2006; 89: 242502

[13] Liu Y H, Yang L Q. Acta Metall Sin, 1989; 25: B396

(刘宜华, 杨林倩. 金属学报, 1989; 25: B396)

[14] Qin G W, Xiao Na, Yang B, Ren Y, Pei W L, Zhao X. Acta Metall Sin (Engl Lett), 2009; 22: 415

[15] Li M F, Shi J, Nakamura Y, Yu R H. Appl Phys, 2007; 89A: 807

[16] Cullity B D, Graham C D. Introduction to Magnetic Materials. New Jersey: Wiley, 2009: 360

[17] Yakushiji K, Mitani S, Takanashi K, Ha J, Fujimori H. J Magn Magn Mater, 2000; 212: 75

[18] Zhang L, Liu Y H, Zhang L S, Zhang R Z, Huang B X. Acta Metall Sin, 2003; 39: 109

(张林, 刘宜华, 张连生, 张汝贞, 黄宝歆. 金属学报, 2003; 39: 109)

[19] Zhang L, Zhang L S. Acta Metall Sin, 2008; 44: 277

(张林, 张连生. 金属学报, 2008; 44: 277)

[20] Liu Y, Sellmyer D J, Shindo D. Handbook of Advanced Magnetic Materials, Vol.1. New York: Springer, 2006: 246

[21] Yang P, Kwok S C H, Fu R K Y, Leng Y X, Wang J, Wan G J, Huang N, Leng Y, Chu P K. Surf Coat Technol, 2004; 177–178: 747

[22] Mott N F. Philos Mag, 1969; 19: 835

[23] Mott N F. Philos Mag, 1976; 34: 643
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[7] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[10] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[11] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[12] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[13] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[14] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[15] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
No Suggested Reading articles found!