Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 469-474    DOI: 10.3724/SP.J.1037.2010.00546
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MAGNETIC AND MAGNETOTRANSPORT PROPERTIES OF Co-C NANOCOMPOSITE THIN FILMS
TANG Ruihe1), YANG Zhigang1), ZHANG Chi1), YANG Bai2), LIU Xiaofang2), YU Ronghai2)
1) Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) School of Materials Science and Engineering, Beihang University, Beijing 100191
Cite this article: 

TANG Ruihe YANG Zhigang ZHANG Chi YANG Bai LIU Xiaofang YU Ronghai. MICROSTRUCTURE, MAGNETIC AND MAGNETOTRANSPORT PROPERTIES OF Co-C NANOCOMPOSITE THIN FILMS. Acta Metall Sin, 2011, 47(4): 469-474.

Download:  PDF(1031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Co-C nanocomposite thin films with a Co atomic content of 13.0% were fabricated onto Si (100) substrates by magnetron co-sputtering technique. Post annealing was carried out in vacuum at annealing temperature ranging from 473 K to 773 K for 30 min. TEM images indicate that the Co nanoparticles are dispersed uniformly in an amorphous carbon matrix for the as-deposited samples, and Co particle size is in a range of 1.5-3.0 nm. After annealing at 673 K, the average Co particle size is enlarged distinctly. Magnetization hysteresis loops reveal that the as-deposited thin films show low magnetization. As annealing temperature is increased, both magnetization and coercivity are enhanced significantly. The samples annealed at 673 K and 773 K show ferromagnetic behaviors at low temperature, and superparamagnetic behaviors at room temperature, which are characteristic magnetic features for granular system. A negative magnetoresistance (MR) of 1.33% is observed for the as-deposited Co-C thin films at 4.2 K in the applied magnetic field of 3980 kA/m. The MR value decreases with increasing annealing temperature. Resistance (R) versus temperature (T) curves exhibit a good linear relationship of lnR-T-1/4 at a broad low temperature range, suggesting that the conduction in Co-C nanocomposite thin films follows the variable range hopping transport mechanism.
Key words:  Co-C nanocomposite thin film      annealing      microstructure      magnetotransport property      magnetic property     
Received:  13 October 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50771058 and 50729101) and the National Major Fundamental Research Program of China (No.2010CB934602)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00546     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/469

[1] Berkowitz A E, Mitchell J R, Carey M J, Young A P, Zhang S, Spada F E, Parker F T, Hutten A, Thomas G. Phys Rev Lett, 1992; 68: 3745

[2] Xiao J Q, Jiang J S, Chien C L. Phys Rev Lett, 1992; 68: 3749

[3] Galli G, Martin R M, Car R, Parrinello M. Phys Rev Lett, 1989; 62: 555

[4] Galli G, Martin R M, Car R, Parrinello M. Phys Rev, 1990; 42B: 7470

[5] McCulloch D G, McKenzie D R, Goringe C M. Phys Rev, 2000; 61B: 2349

[6] Haerle R, Riedo E, Pasquarello A, Baldereschi A. Phys Rev, 2001; 65B: 045101

[7] Yu M, Liu Y, Sellmyer D J. J Appl Phys, 1999; 85: 4319

[8] Mi W B, Guo L, Jiang E Y, Li Z Q, Wu P, Bai H L. J Phys, 2003; 36D: 2393

[9] Babonneau D, Briatico J, Petroff F, Cabioch T, Naudon A. J Appl Phys, 2000; 87: 3432

[10] Mi W B, Li Z Q, Wu P, Jiang E Y, Bai H L, Hou D L, Li X L. J Appl Phys, 2005; 97: 043903

[11] Fonseca F C, Ferlauto A S, Alvarez F, Goya G F, Jardim R F. J Appl Phys, 2005; 97: 044313

[12] Wang X C, Mi W B, Jiang E Y, Bai H L. Appl Phys Lett, 2006; 89: 242502

[13] Liu Y H, Yang L Q. Acta Metall Sin, 1989; 25: B396

(刘宜华, 杨林倩. 金属学报, 1989; 25: B396)

[14] Qin G W, Xiao Na, Yang B, Ren Y, Pei W L, Zhao X. Acta Metall Sin (Engl Lett), 2009; 22: 415

[15] Li M F, Shi J, Nakamura Y, Yu R H. Appl Phys, 2007; 89A: 807

[16] Cullity B D, Graham C D. Introduction to Magnetic Materials. New Jersey: Wiley, 2009: 360

[17] Yakushiji K, Mitani S, Takanashi K, Ha J, Fujimori H. J Magn Magn Mater, 2000; 212: 75

[18] Zhang L, Liu Y H, Zhang L S, Zhang R Z, Huang B X. Acta Metall Sin, 2003; 39: 109

(张林, 刘宜华, 张连生, 张汝贞, 黄宝歆. 金属学报, 2003; 39: 109)

[19] Zhang L, Zhang L S. Acta Metall Sin, 2008; 44: 277

(张林, 张连生. 金属学报, 2008; 44: 277)

[20] Liu Y, Sellmyer D J, Shindo D. Handbook of Advanced Magnetic Materials, Vol.1. New York: Springer, 2006: 246

[21] Yang P, Kwok S C H, Fu R K Y, Leng Y X, Wang J, Wan G J, Huang N, Leng Y, Chu P K. Surf Coat Technol, 2004; 177–178: 747

[22] Mott N F. Philos Mag, 1969; 19: 835

[23] Mott N F. Philos Mag, 1976; 34: 643
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!