Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (3): 298-304    DOI: 10.3724/SP.J.1037.2010.00413
论文 Current Issue | Archive | Adv Search |
EFFECT OF HOT PRESSING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SiC PARTICLE REINFORCED ALUMINUM
MATRIX COMPOSITES
JIN Peng, XIAO Bol¨u, WANG Quanzhao, MA Zongyi, LIU Yue, LI Shu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

JIN Peng XIAO Bolu WANG Quanzhao MA Zongyi LIU Yue LI Shu. EFFECT OF HOT PRESSING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SiC PARTICLE REINFORCED ALUMINUM
MATRIX COMPOSITES. Acta Metall Sin, 2011, 47(3): 298-304.

Download:  PDF(3027KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of hot pressing temperature on microstructures and tensile properties of 15% (volume fraction) SiCp/2009Al composites were investigated in this paper. The relative density of the composites increased rapidly with increasing the hot pressing temperature up to 580 ℃ and decreased with further increasing the temperatures. TEM observations revealed that the interface bonding was quite weak with the interface crack when the hot pressing temperature was below 560 ℃. When the composites were hot pressed at 580 and 600 ℃, the interface was clean and had a good interface bonding. The MgAl2O4 and Al4C3 formed at the interfaces when the hot pressing temperature was above 620 ℃. Tensile tests indicated that the composite fabricated at 580 ℃ exhibited the optimum strengtand ductility. Fractography revealed that for the composite fabricated at the hot pessing temperture below 560 ℃, the fracture mechanism was mainly the interfacial debonding. For the compositfabrcated at 580 and 600 ℃, the fracture mechanism of the composite was the matrix ductile fracture and the SiC particle fracture, When the hot pressing temperature was above 620 ℃, the interface fractured along MgAl2O4 and Al4C3, and the fracture mechanism of the composite was the matrix ductile fracture, the interface crack and the particle fracture.
Key words:  aluminum matrix composite      vacuum hot pressing      interface      mechanical property     
Received:  17 August 2010     
ZTFLH: 

TF124

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00413     OR     https://www.ams.org.cn/EN/Y2011/V47/I3/298

[1] Ouyang Q B, Li R X, Wang W L, Zhang G D, Zhang D. Mater Sci Forum, 2007; 546–549: 1551

[2] Chawla N. Adv Mater Process, 2006; 164(7): 29

[3] Rawal S. J Met, 2001; 53(4): 14

[4] Chawla N, Chawla K K. J Met, 2006; 58(11): 67

[5] Evans R D, Boyd J D. Scr Mater, 2003; 49: 59

[6] Zhou J, Dru˙zd˙zel A T, Duszczyk J. J Mater Sci, 1999; 34: 5089

[7] Gupta A K. Bull Mater Sci, 1995; 18: 773

[8] Geng L, Qu S J, Lei T Q. Key Eng Mater, 2003; 249: 233

[9] Savitskii A P, Romanov G N, Marisunova L S. Russ Phys J, 1968; 11(8): 5

[10] Savitskii A P, Romanov G N. Powder Metall Met Ceram, 1986; 25: 184

[11] Min K H, Kang S P, Lee B H, Lee J K, Kim Y D. J Alloys Compd, 2006; 419: 290

[12] Rahimian M, Ehsani N, Parvin N, Baharvandi H R. J Mater Process Technol, 2009; 209: 5387

[13] Hong S H, Chung K H. Mater Sci Eng, 1995; A194: 165

[14] Song M, He Y H. Mater Des, 2010; 31: 985

[15] Min K H, Kang S P, Kim D G, Kim Y D. J Alloys Compd, 2005; 400: 150

[16] Fogagnolo J B, Robert M H, Torralba J M. Mater Sci Eng, 2006; A426: 85

[17] Shin K S, Chung D S, Lee S H. Metall Mater Trans, 1997; 28A: 2625

[18] Laurent V, Chatain D, Eustathopoulos N. Mater Sci Eng, 1991; A135: 894

[19] Gu M Y, Mei Z, Jin Y P, Wu Z A. Scr Mater, 1999; 40: 985

[20] Shi Z L, Ochiai S, Hojo M, Lee J C, Gu M Y, Lee H, Wu R J. J Mater Sci, 2001; 36: 2441

[21] Luo Z P, Song Y G, Zhang S Q. Scr Mater, 2001; 45: 1183

[22] Wang N, Wang Z R, Weatherly G C. Metall Trans, 1992; 23A: 1423

[23] RatnaParkhi P L, Howe J M. Metall Mater Trans, 1994; 25A: 617

[24] Zhong W M, Esperance G L, Suery M. Metall Mater Trans, 1995; 26A: 2637

[25] Gonzalez G, Salvo L, Suery M, L’Esp´erance G. Scr Metall Mater, 1995; 33: 1969

[26] Wang N, Wang Z, Weatherly G C. Metall Trans, 1979; 23A: 1423

[27] Kim Y M, Lee J C. Mater Sci Eng, 2006; A420: 8

[28] Carotenuto G, Gallo A, Nicolais L. J Mater Sci, 1994; 29: 4967

[29] Lloyd D J, Lagaoe H, McLeod A, Morris P L. Mater Sci Eng, 1989; A107: 73

[30] Sahin Y. Mater Des, 2006; 24: 671

[31] Carim A H. Mater Lett, 1991; 12: 153

[32] Man C F, Mummery P M, Derby B, Jenkins M L. In: Frank J ed., Proc 2nd Int Conf Interfacial Phenomena in Composite Materials, Leuven: Butterworth–Heinemann,

1991: 175

[33] Thebaud F, Herve E, Silva R D, Suery M, Bretheau T. In: Frank J ed., Proc 2nd Int Conf Interfacial Phenomena in Composite Materials, Leuven: Butterworth–Heinemann,

1991: 179
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
No Suggested Reading articles found!