|
|
Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand |
MA Zongyi( ), XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong |
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand. Acta Metall Sin, 2023, 59(4): 457-466.
|
Abstract Tianwen-1 is China's first planetary probe. Its core, the rover Zhurong, undertook the task of tour and survey, and had extended the mission over the designed 90-Martian-day period limit on Mars. The rover was equipped with various silicon-carbide-particle-reinforced aluminum matrix composites for its bearing structure, motion system, and detectors to meet design requirements, such as lightweight, wear resistance, impact resistance, and dimensional stability. The use of these composites has set a new record for the proportion of aluminum matrix composites used in Chinese spacecraft. This paper discusses the research and development process of the four types of aluminum matrix composites used for the rover Zhurong: property simulation, material design, preparation, and processing. Additionally, the paper introduces new research and development paradigms based on material genetic engineering and the use of synchrotron radiation or neutron scattering facilities. The future development of aluminum matrix composites for high-tech equipment is also discussed.
|
Received: 28 November 2022
|
|
Fund: National Key Research and Development Program of China(2022YFB3707400) |
Corresponding Authors:
MA Zongyi, professor, Tel: (024)83978908, E-mail: zyma@imr.ac.cn
|
1 |
Zhang X X, Zhang Q, Zangmeister T, et al. A three-dimensional realistic microstructure model of particle-reinforced metal matrix composites [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 035010
|
2 |
Peng P, Gao M Q, Guo E Y, et al. Deformation behavior and damage in B4Cp/6061Al composites: An actual 3D microstructure-based modeling [J]. Mater. Sci. Eng., 2020, A781: 139169
|
3 |
Zhang J F, Zhang X X, Liu Z Y, et al. A rigid body dynamics simulation enhanced representative volume element builder for CNT/Al composite [J]. Int. J. Mech. Mater. Des., 2022, 18: 407
doi: 10.1007/s10999-021-09587-1
|
4 |
Sheng P Y, Zhang J Z, Ji Z. An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles [J]. Compos. Sci. Technol., 2016, 134: 26
doi: 10.1016/j.compscitech.2016.08.009
|
5 |
Zhang J, Ouyang Q B, Guo Q, et al. 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites [J]. Compos. Sci. Technol., 2016, 123: 1
doi: 10.1016/j.compscitech.2015.11.014
|
6 |
Chandra N, Li H, Shet C, et al. Some issues in the application of cohesive zone models for metal-ceramic interfaces [J]. Int. J. Solids Struct., 2002, 39: 2827
doi: 10.1016/S0020-7683(02)00149-X
|
7 |
Li X, Chen J. A highly efficient prediction of delamination migration in laminated composites using the extended cohesive damage model [J]. Compos. Struct., 2017, 160: 712
doi: 10.1016/j.compstruct.2016.10.098
|
8 |
Zhang J F, Zhang X X, Wang Q Z, et al. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. J. Mater. Sci. Technol., 2018, 34: 627
doi: 10.1016/j.jmst.2017.09.005
|
9 |
Zhang J F, Andrä H, Zhang X X, et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites [J]. Compos. Struct., 2019, 226: 111281
doi: 10.1016/j.compstruct.2019.111281
|
10 |
Zhang J F, Zhang X X, Andrä H, et al. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87: 167
doi: 10.1016/j.jmst.2021.01.079
|
11 |
Nie J F, Chen Y Y, Chen X, et al. Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets [J]. Scr. Mater., 2020, 189: 140
doi: 10.1016/j.scriptamat.2020.08.017
|
12 |
Deng C F, Zhang X X, Wang D Z, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites [J]. Mater. Lett., 2007, 61: 1725
doi: 10.1016/j.matlet.2006.07.119
|
13 |
Bi S, Li Z S, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
|
|
毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能 [J]. 金属学报, 2021, 57: 71
|
14 |
Ma Y, Chen Z, Wang M L, et al. High cycle fatigue behavior of the in-situ TiB2/7050 composite [J]. Mater. Sci. Eng., 2015, A640: 350
|
15 |
Chen D, Wang M L, Zhang Y J, et al. Microstructure and mechanical properties of TiB2/2219 composites [J]. Mater. Res. Innovations, 2014, 18(suppl.4) : S4-514
|
16 |
Stein J, Lenczowski B, Anglaret E, et al. Influence of the concentration and nature of carbon nanotubes on the mechanical properties of AA5083 aluminium alloy matrix composites [J]. Carbon, 2014, 77: 44
doi: 10.1016/j.carbon.2014.05.001
|
17 |
Zheng Z, Zhang X X, Qian M F, et al. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108: 164
doi: 10.1016/j.jmst.2021.08.056
|
18 |
Zhang L J, Qiu F, Wang J G, et al. Microstructures and mechanical properties of the Al2014 composites reinforced with bimodal sized SiC particles [J]. Mater. Sci. Eng., 2015, A637: 70
|
19 |
Nie J H, Fan J Z, Zhang S M, et al. Tensile and fracture properties of 15 vol% SiCp/2009Al composites fabricated by hot isostatic pressing and hot extrusion processes [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 875
doi: 10.1007/s40195-014-0127-2
|
20 |
Fan J Z, Shi L K. Development and application of particulate reinforced aluminum matrix composites [J]. Aerosp. Mater. Technol., 2012, 42(1): 1
|
|
樊建中, 石力开. 颗粒增强铝基复合材料研究与应用发展 [J]. 宇航材料工艺, 2012, 42(1): 1
|
21 |
Aluminum Composites USADWA, Inc. 2009/SiC/25p aluminum MMC [E].
|
22 |
Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites [J]. Mater. Sci. Eng., 2019, A767: 138422
|
23 |
Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites [J]. Mater. Charact., 2019, 158: 109966
doi: 10.1016/j.matchar.2019.109966
|
24 |
Zhu S Z, Wang D, Xiao B L, et al. Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al-Mg-Si composites [J]. Composites, 2022, 236B: 109851
|
25 |
Nie J H, Fan J Z, Wei S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation [J]. Aeronaut. Manuf. Technol., 2017, 60(16): 26
|
|
聂俊辉, 樊建中, 魏少华 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用 [J]. 航空制造技术, 2017, 60(16): 26
|
26 |
The Aluminum Association, Inc. International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys [R]. Arlington: The Aluminum Association, Inc., 2015
|
27 |
Zhang Q, Wang Q Z, Xiao B L, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy [J]. Acta Metall. Sin., 2012, 48: 135
doi: 10.3724/SP.J.1037.2011.00472
|
|
张 琪, 王全兆, 肖伯律 等. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布 [J]. 金属学报, 2012, 48: 135
|
28 |
Marioara C D, Andersen S J, Jansen J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Mater., 2003, 51: 789
doi: 10.1016/S1359-6454(02)00470-6
|
29 |
Zandbergen M W, Xu Q, Cerezo A, et al. Study of precipitation in Al-Mg-Si alloys by atom probe tomography I. Microstructural changes as a function of ageing temperature [J]. Acta Mater., 2015, 101: 136
doi: 10.1016/j.actamat.2015.08.017
|
30 |
Pogatscher S, Antrekowitsch H, Leitner H, et al. Influence of the thermal route on the peak-aged microstructures in an Al-Mg-Si aluminum alloy [J]. Scr. Mater., 2013, 68: 158
doi: 10.1016/j.scriptamat.2012.10.006
|
31 |
Andersen S J, Marioara C D, Friis J, et al. Precipitates in aluminium alloys [J]. Adv. Phys., 2018, 3X: 1479984
|
32 |
Vissers R, Van Huis M A, Jansen J, et al. The crystal structure of the β′ phase in Al-Mg-Si alloys [J]. Acta Mater., 2007, 55: 3815
doi: 10.1016/j.actamat.2007.02.032
|
33 |
Ding L P, Hu H, Jia Z H, et al. The disordered structure of Q' and C phases in Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2016, 118: 55
doi: 10.1016/j.scriptamat.2016.03.011
|
34 |
Zhu S Z, Wang D, Wang Q Z, et al. Influence of cu content on the negative effect of natural aging in SiC/Al-Mg-Si-Cu composites [J]. Acta Metall. Sin., 2021, 57: 928
|
|
朱士泽, 王 东, 王全兆 等. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响 [J]. 金属学报, 2021, 57: 928
doi: 10.11900/0412.1961.2020.00330
|
35 |
Zhu S Z, Wang D, Xiao B L, et al. Suppressed negative effects of natural aging by pre-aging in SiCp/6092Al composites [J]. Composites, 2021, 212B: 108730
|
36 |
Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
doi: 10.1016/j.actamat.2015.01.006
|
37 |
Luzin V, Spiridonov P, Spencer K, et al. Neutron diffraction study of macrostress and microstress in Al-Al2O3-based corrosion protection coating obtained by cold spray (dynamic metallization) [J]. J. Therm. Spray Technol., 2020, 29: 1437
doi: 10.1007/s11666-020-01077-8
|
38 |
Roy S, Gibmeier J, Kostov V, et al. Internal load transfer in a metal matrix composite with a three-dimensional interpenetrating structure [J]. Acta Mater., 2011, 59: 1424
doi: 10.1016/j.actamat.2010.11.004
|
39 |
Bouafia F, Serier B, Bouiadjra B A B. Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite [J]. Comput. Mater. Sci., 2012, 54: 195
doi: 10.1016/j.commatsci.2011.10.030
|
40 |
Cao D F, Duan Q F, Li S X, et al. Effects of thermal residual stresses and thermal-induced geometrically necessary dislocations on size-dependent strengthening of particle-reinforced MMCs [J]. Compos. Struct., 2018, 200: 290
doi: 10.1016/j.compstruct.2018.05.129
|
41 |
Zhang X X, Xiao B L, Andrä H, et al. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models [J]. Compos. Struct., 2016, 137: 18
doi: 10.1016/j.compstruct.2015.10.045
|
42 |
Zhang X, Wang S Q. Interfacial strengthening of graphene/aluminum composites through point defects: A first-principles study [J]. Nanomaterials, 2021, 11: 738
doi: 10.3390/nano11030738
|
43 |
Gxowa-Penxa Z, Daswa P, Modiba R, et al. Development and characterization of Al-Al3Ni-Sn metal matrix composite [J]. Mater. Chem. Phys., 2021, 259: 124027
doi: 10.1016/j.matchemphys.2020.124027
|
44 |
Dandekar C R, Shin Y C. Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics [J]. Composites, 2011, 42A: 355
|
45 |
Choi B K, Yoon G H, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading [J]. Composites, 2016, 91B: 119
|
46 |
Zhang J F, Zhang X X, Wang Q Z, et al. Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
doi: 10.1016/j.mechmat.2018.04.011
|
47 |
Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
|
张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
48 |
Dezecot S, Buffiere J Y, Koster A, et al. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography [J]. Scr. Mater., 2016, 113: 254
doi: 10.1016/j.scriptamat.2015.11.017
|
49 |
Yokota M, Kusano T, Mori M, et al. In-situ 3D visualization of compression process for powder beds by synchrotron-radiation X-ray computed laminography [J]. Powder Technol., 2021, 380: 265
doi: 10.1016/j.powtec.2020.11.019
|
50 |
Shoji E, Isogai S, Suzuki R, et al. Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification [J]. Scr. Mater., 2020, 175: 29
doi: 10.1016/j.scriptamat.2019.08.041
|
51 |
Zhang X X, Zhang J F, Liu Z Y, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54: 58
doi: 10.1016/j.jmst.2020.04.016
|
52 |
Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|