Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (4): 457-466    DOI: 10.11900/0412.1961.2022.00605
Overview Current Issue | Archive | Adv Search |
Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand
MA Zongyi(), XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand. Acta Metall Sin, 2023, 59(4): 457-466.

Download:  HTML  PDF(1898KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tianwen-1 is China's first planetary probe. Its core, the rover Zhurong, undertook the task of tour and survey, and had extended the mission over the designed 90-Martian-day period limit on Mars. The rover was equipped with various silicon-carbide-particle-reinforced aluminum matrix composites for its bearing structure, motion system, and detectors to meet design requirements, such as lightweight, wear resistance, impact resistance, and dimensional stability. The use of these composites has set a new record for the proportion of aluminum matrix composites used in Chinese spacecraft. This paper discusses the research and development process of the four types of aluminum matrix composites used for the rover Zhurong: property simulation, material design, preparation, and processing. Additionally, the paper introduces new research and development paradigms based on material genetic engineering and the use of synchrotron radiation or neutron scattering facilities. The future development of aluminum matrix composites for high-tech equipment is also discussed.

Key words:  aluminum matrix composite      Mars rover      preparation and processing      genetic engineering of material      large-scale scientific facility     
Received:  28 November 2022     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2022YFB3707400)
Corresponding Authors:  MA Zongyi, professor, Tel: (024)83978908, E-mail: zyma@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00605     OR     https://www.ams.org.cn/EN/Y2023/V59/I4/457

Fig.1  Typical representative volume element (RVE) models of aluminum matrix composite
(a) RVE with interfacial layer structure
(b) RVE model reconstructed by 3D nano-CT
(c) ball-and-stick hybrid dense stack RVE model
Fig.2  Specific strength and specific modulus of aluminum matrix composites reinforced by micron (M-AMC) and nano (N-AMC) particles[11-25] (CNT—carbon nanotube, GNP—graphene nanoplatelet)
Fig.3  Precipitate morphologies of 17%SiC/Al-1.2Mg-0.6Si composites in directly artificially aging state (a, b) and one-week natural aging then artificially aging state (c, d)[24]
MaterialHeat treatmentYieldTensileElongationModulus
strengthstrength%GPa
MPaMPa
17%SiC/2009AlNatural aging3805507.098
17%SiC/6092AlArtificial aging4395136.0102
Natural aging27244511.0-
Natural aging and then artificial aging4205017.0-
Pre-aging and then natural aging25042511.0-
Pre-aging, natural aging and then artificial aging4355146.0-
Table 1  Comparison of mechanical properties of composites with various compositions and aging processes
Fig.4  Large-sized aluminum matrix composite billet reinforced by high-content ceramic particles prepared by powder metallurgy route (unit: mm)
Fig.5  In situ neutron diffraction experiment[51]
(a) experiment apparatus (b) diffraction pattern
1 Zhang X X, Zhang Q, Zangmeister T, et al. A three-dimensional realistic microstructure model of particle-reinforced metal matrix composites [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 035010
2 Peng P, Gao M Q, Guo E Y, et al. Deformation behavior and damage in B4Cp/6061Al composites: An actual 3D microstructure-based modeling [J]. Mater. Sci. Eng., 2020, A781: 139169
3 Zhang J F, Zhang X X, Liu Z Y, et al. A rigid body dynamics simulation enhanced representative volume element builder for CNT/Al composite [J]. Int. J. Mech. Mater. Des., 2022, 18: 407
doi: 10.1007/s10999-021-09587-1
4 Sheng P Y, Zhang J Z, Ji Z. An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles [J]. Compos. Sci. Technol., 2016, 134: 26
doi: 10.1016/j.compscitech.2016.08.009
5 Zhang J, Ouyang Q B, Guo Q, et al. 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites [J]. Compos. Sci. Technol., 2016, 123: 1
doi: 10.1016/j.compscitech.2015.11.014
6 Chandra N, Li H, Shet C, et al. Some issues in the application of cohesive zone models for metal-ceramic interfaces [J]. Int. J. Solids Struct., 2002, 39: 2827
doi: 10.1016/S0020-7683(02)00149-X
7 Li X, Chen J. A highly efficient prediction of delamination migration in laminated composites using the extended cohesive damage model [J]. Compos. Struct., 2017, 160: 712
doi: 10.1016/j.compstruct.2016.10.098
8 Zhang J F, Zhang X X, Wang Q Z, et al. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. J. Mater. Sci. Technol., 2018, 34: 627
doi: 10.1016/j.jmst.2017.09.005
9 Zhang J F, Andrä H, Zhang X X, et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites [J]. Compos. Struct., 2019, 226: 111281
doi: 10.1016/j.compstruct.2019.111281
10 Zhang J F, Zhang X X, Andrä H, et al. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87: 167
doi: 10.1016/j.jmst.2021.01.079
11 Nie J F, Chen Y Y, Chen X, et al. Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets [J]. Scr. Mater., 2020, 189: 140
doi: 10.1016/j.scriptamat.2020.08.017
12 Deng C F, Zhang X X, Wang D Z, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites [J]. Mater. Lett., 2007, 61: 1725
doi: 10.1016/j.matlet.2006.07.119
13 Bi S, Li Z S, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能 [J]. 金属学报, 2021, 57: 71
14 Ma Y, Chen Z, Wang M L, et al. High cycle fatigue behavior of the in-situ TiB2/7050 composite [J]. Mater. Sci. Eng., 2015, A640: 350
15 Chen D, Wang M L, Zhang Y J, et al. Microstructure and mechanical properties of TiB2/2219 composites [J]. Mater. Res. Innovations, 2014, 18(suppl.4) : S4-514
16 Stein J, Lenczowski B, Anglaret E, et al. Influence of the concentration and nature of carbon nanotubes on the mechanical properties of AA5083 aluminium alloy matrix composites [J]. Carbon, 2014, 77: 44
doi: 10.1016/j.carbon.2014.05.001
17 Zheng Z, Zhang X X, Qian M F, et al. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108: 164
doi: 10.1016/j.jmst.2021.08.056
18 Zhang L J, Qiu F, Wang J G, et al. Microstructures and mechanical properties of the Al2014 composites reinforced with bimodal sized SiC particles [J]. Mater. Sci. Eng., 2015, A637: 70
19 Nie J H, Fan J Z, Zhang S M, et al. Tensile and fracture properties of 15 vol% SiCp/2009Al composites fabricated by hot isostatic pressing and hot extrusion processes [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 875
doi: 10.1007/s40195-014-0127-2
20 Fan J Z, Shi L K. Development and application of particulate reinforced aluminum matrix composites [J]. Aerosp. Mater. Technol., 2012, 42(1): 1
樊建中, 石力开. 颗粒增强铝基复合材料研究与应用发展 [J]. 宇航材料工艺, 2012, 42(1): 1
21 Aluminum Composites USADWA, Inc. 2009/SiC/25p aluminum MMC [E].
22 Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites [J]. Mater. Sci. Eng., 2019, A767: 138422
23 Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites [J]. Mater. Charact., 2019, 158: 109966
doi: 10.1016/j.matchar.2019.109966
24 Zhu S Z, Wang D, Xiao B L, et al. Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al-Mg-Si composites [J]. Composites, 2022, 236B: 109851
25 Nie J H, Fan J Z, Wei S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation [J]. Aeronaut. Manuf. Technol., 2017, 60(16): 26
聂俊辉, 樊建中, 魏少华 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用 [J]. 航空制造技术, 2017, 60(16): 26
26 The Aluminum Association, Inc. International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys [R]. Arlington: The Aluminum Association, Inc., 2015
27 Zhang Q, Wang Q Z, Xiao B L, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy [J]. Acta Metall. Sin., 2012, 48: 135
doi: 10.3724/SP.J.1037.2011.00472
张 琪, 王全兆, 肖伯律 等. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布 [J]. 金属学报, 2012, 48: 135
28 Marioara C D, Andersen S J, Jansen J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Mater., 2003, 51: 789
doi: 10.1016/S1359-6454(02)00470-6
29 Zandbergen M W, Xu Q, Cerezo A, et al. Study of precipitation in Al-Mg-Si alloys by atom probe tomography I. Microstructural changes as a function of ageing temperature [J]. Acta Mater., 2015, 101: 136
doi: 10.1016/j.actamat.2015.08.017
30 Pogatscher S, Antrekowitsch H, Leitner H, et al. Influence of the thermal route on the peak-aged microstructures in an Al-Mg-Si aluminum alloy [J]. Scr. Mater., 2013, 68: 158
doi: 10.1016/j.scriptamat.2012.10.006
31 Andersen S J, Marioara C D, Friis J, et al. Precipitates in aluminium alloys [J]. Adv. Phys., 2018, 3X: 1479984
32 Vissers R, Van Huis M A, Jansen J, et al. The crystal structure of the β′ phase in Al-Mg-Si alloys [J]. Acta Mater., 2007, 55: 3815
doi: 10.1016/j.actamat.2007.02.032
33 Ding L P, Hu H, Jia Z H, et al. The disordered structure of Q' and C phases in Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2016, 118: 55
doi: 10.1016/j.scriptamat.2016.03.011
34 Zhu S Z, Wang D, Wang Q Z, et al. Influence of cu content on the negative effect of natural aging in SiC/Al-Mg-Si-Cu composites [J]. Acta Metall. Sin., 2021, 57: 928
朱士泽, 王 东, 王全兆 等. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响 [J]. 金属学报, 2021, 57: 928
doi: 10.11900/0412.1961.2020.00330
35 Zhu S Z, Wang D, Xiao B L, et al. Suppressed negative effects of natural aging by pre-aging in SiCp/6092Al composites [J]. Composites, 2021, 212B: 108730
36 Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
doi: 10.1016/j.actamat.2015.01.006
37 Luzin V, Spiridonov P, Spencer K, et al. Neutron diffraction study of macrostress and microstress in Al-Al2O3-based corrosion protection coating obtained by cold spray (dynamic metallization) [J]. J. Therm. Spray Technol., 2020, 29: 1437
doi: 10.1007/s11666-020-01077-8
38 Roy S, Gibmeier J, Kostov V, et al. Internal load transfer in a metal matrix composite with a three-dimensional interpenetrating structure [J]. Acta Mater., 2011, 59: 1424
doi: 10.1016/j.actamat.2010.11.004
39 Bouafia F, Serier B, Bouiadjra B A B. Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite [J]. Comput. Mater. Sci., 2012, 54: 195
doi: 10.1016/j.commatsci.2011.10.030
40 Cao D F, Duan Q F, Li S X, et al. Effects of thermal residual stresses and thermal-induced geometrically necessary dislocations on size-dependent strengthening of particle-reinforced MMCs [J]. Compos. Struct., 2018, 200: 290
doi: 10.1016/j.compstruct.2018.05.129
41 Zhang X X, Xiao B L, Andrä H, et al. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models [J]. Compos. Struct., 2016, 137: 18
doi: 10.1016/j.compstruct.2015.10.045
42 Zhang X, Wang S Q. Interfacial strengthening of graphene/aluminum composites through point defects: A first-principles study [J]. Nanomaterials, 2021, 11: 738
doi: 10.3390/nano11030738
43 Gxowa-Penxa Z, Daswa P, Modiba R, et al. Development and characterization of Al-Al3Ni-Sn metal matrix composite [J]. Mater. Chem. Phys., 2021, 259: 124027
doi: 10.1016/j.matchemphys.2020.124027
44 Dandekar C R, Shin Y C. Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics [J]. Composites, 2011, 42A: 355
45 Choi B K, Yoon G H, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading [J]. Composites, 2016, 91B: 119
46 Zhang J F, Zhang X X, Wang Q Z, et al. Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
doi: 10.1016/j.mechmat.2018.04.011
47 Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
48 Dezecot S, Buffiere J Y, Koster A, et al. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography [J]. Scr. Mater., 2016, 113: 254
doi: 10.1016/j.scriptamat.2015.11.017
49 Yokota M, Kusano T, Mori M, et al. In-situ 3D visualization of compression process for powder beds by synchrotron-radiation X-ray computed laminography [J]. Powder Technol., 2021, 380: 265
doi: 10.1016/j.powtec.2020.11.019
50 Shoji E, Isogai S, Suzuki R, et al. Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification [J]. Scr. Mater., 2020, 175: 29
doi: 10.1016/j.scriptamat.2019.08.041
51 Zhang X X, Zhang J F, Liu Z Y, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54: 58
doi: 10.1016/j.jmst.2020.04.016
52 Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
[1] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[2] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[3] Zhaozhao Lü,Yufei ZU,Jianjun SHA,Yuqiang XIAN,Wei ZHANG,Ding CUI,Conglin YAN. Fabrication and Mechanical Properties of Carbon Fiber-Reinforced Aluminum Matrix Compositeswith Cu Interphase[J]. 金属学报, 2019, 55(3): 317-324.
[4] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[5] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[6] Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. 金属学报, 2019, 55(1): 149-159.
[7] Naiqin ZHAO, Xinghai LIU, Bowen PU. Progress on Multi-Dimensional Carbon Nanomaterials Reinforced Aluminum Matrix Composites: A Review[J]. 金属学报, 2019, 55(1): 1-15.
[8] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[9] Hao DING, Xiping CUI, Changshou XU, Aibin LI, Lin GENG, Guohua FAN, Junfeng CHEN, Songhe MENG. Fabrication and Mechanical Characteristics of Multi-Laminated Aluminum Matrix Composites Reinforcedby Continuous Basalt Fibers[J]. 金属学报, 2018, 54(8): 1171-1178.
[10] Xiaoyun LIU,Wenguang WANG,Dong WANG,Bolv XIAO,Dingrui NI,Liqing CHEN,Zongyi MA. Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites[J]. 金属学报, 2017, 53(7): 869-878.
[11] WANG Dong, WANG Quanzhao, XIAO Bol, NI Dingrui, MA Zongyi. EFFECT OF HEAT TREATMENT BEFORE WELDING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED SiCp/Al-Cu-Mg COMPOSITE JOINTS[J]. 金属学报, 2014, 50(4): 489-497.
[12] XU Hongyu, HUANG Lujun, GENG Lin, ZHANG Jie, HUANG Yudong. EFFECTS OF Cu CONTENT ON THE WEAR PROPERTIES OF Al2O3•SiO2sf/Al-Cu COMPOSITES[J]. 金属学报, 2013, 49(9): 1131-1136.
[13] ZHANG Qi WANG Quanzhao XIAO Bol¨u MA Zongyi. PHASES AND ELEMENTAL DISTRIBUTIONS IN SiCp/Al–Cu–Mg COMPOSITE FABRICATED BY POWDER METALLURGY[J]. 金属学报, 2012, 48(2): 135-141.
[14] JIN Peng XIAO Bolu WANG Quanzhao MA Zongyi LIU Yue LI Shu. EFFECT OF HOT PRESSING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SiC PARTICLE REINFORCED ALUMINUM
MATRIX COMPOSITES
[J]. 金属学报, 2011, 47(3): 298-304.
[15] . A COMBINED STRENGTHEN MODEL OF THE AGEING PROCESS OF Al/SiCP COMPOSITES[J]. 金属学报, 2006, 42(8): 887-891 .
No Suggested Reading articles found!