Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1161-1172    DOI: 10.3724/SP.J.1037.2010.00272
论文 Current Issue | Archive | Adv Search |
GAO Yingjun 1,2,3, LUO Zhirong 1,2, HU Xiangying 1, HUANG Chuanggao 1
1. College of Physics Science and Engineering, Guangxi University, Nanning 530004
2. Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning 530004
3. International Center for Materials Physics, Chinese Academy of Science, Shenyang 110016
Download:  PDF(4856KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to obtain the deformation grain structure for static recrystallization, an initial grain structure are produced by lattice deformation model; aiming at characteristics of different deformation regions and non–uniform distribution of the stored energy in deformed alloy, a multistate free energy (MSFE) function are proposed by introducing a weight factor for the stored energy and a characteristics state factor for different deformed regions. Based on these, the microstructure evolutions of static recrystallization for deformed Mg alloys are simulated by phase field model. The transformation dynamic curve of recrystallization, Avrami curve, and the regularity for stored energy releaing and distribution of grain size in recrytallization process are systematically analyzed. The dynamic regularity of statc recrystallization obtained by simulating is in good accord with the JMAK theory, and the Avramcurve by simulating can be regard as a linear with average slopes 2.45, 2.35, 2.19 and 2.15, respectively. The Avrami time index decreases with the true strain increasing. The stored energy releases faster, and the lasting time of static recrystallization process is shorter when the true strain is greater. Based on the established MSFE model, the simulation results here are in good agreement with the other theoretical results and experimntal results.
Key words:  phase field model      static recrystallization      plastic deformation      microstructure      AZ31 Mg alloy     
Received:  08 June 2010     



Supported by National Natural Science Foundation of China (Nos.50661001 and 50061001) and Natural Science Foundation of Guangxi Province (Nos.0991026, 0832029 and 0639004)

Corresponding Authors:  GAO Yingjun     E-mail:

Cite this article: 

GAO Yingjun LUO Zhirong HU Xiangying HUANG Chuanggao. PHASE FIELD SIMULATION OF STATIC RECRYSTALLIZATION FOR AZ31 Mg ALLOY. Acta Metall Sin, 2010, 46(10): 1161-1172.

URL:     OR

[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater Sci Eng, 2001; A302:37-45 [2] Hakamada M, Furuta T, Chino Y, Chen Y Q, Kusuda H, Mabuchi M, Mamoru Mabuchi. Life cycle inventory study on magnesium alloy substitution in vehicles[J]. Energy, 2007; 32(8):1352-1360 [3] Kancko T, Suzuki M. Automotive Applications of Magnesium Alloys[J]. Mater Sci Forum, 2003; 419-422: 67-72 [4] Agnew S R, Senn J W, andHorton J . Mg Sheet Metal Forming: Lessons Learned from Deep Drawing Li and Y Solid-Solution Alloys[J]. JOM, 2006; 58(5):62-69 [5] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M], Elsevier Science, Oxford, UK, 1995 [6] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J. Current issues in recrystallization: a review[J]. Mater Sci Eng, 1997; A238:219-274 [7] Liss K D, Garbe U, Li H J, Thomas S, Jonathan D A,Yan K. Adv Eng Mater, 2009; 11(8): 637-640 [8] Song X Y, Rettenmayr M. Modelling study on recrystallization,recovery and their temperature dependence in inhomogeneously deformed materials[J]. Mater Sci Eng, 2002; A332:153-160 [9] Walasek T A. Experimental verification of Monte Carlo recrystallization model[J]. J Mater Process Technol, 2004; 157-158:262-267 [10] Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium[J]. Acta Mater, 2006; 54(14):3673-3689 [11] Guan X J, Zhang J X and Sun S. Computer Simulation for Recrystallization of Deformed Metal[J]. Special Steel. 2004; 25(3): 34-37 (关小军, 张继详, 孙胜. 变形金属再结晶过程计算机模拟. 特殊钢, 2004,25(3):34-37) [12] Zhang J X. PhD Dissertation, Shandong University, Jinan, 2006 (张继详. 基于Monte Carlo方法的材料退火过程模拟模型及计算机仿真关键技术研究[D]. 山东大学博士学位论文,济南,2006 ) [13] Kazeminezhad M. On the modeling of the static recrystallization considering the initial grain size effects[J]. Mater Sci Eng, 2008; A486:202-207 [14] Lu Y, Zhang L W, Deng X H, Pei J B, Wang S, Zhang G L. Modeling Dynamic Recrystalization of Pure Copper Using Cellular Automaton Method[J]. Acta Metall Sin, 2008; 44(3):292-296 (卢瑀, 张立文, 邓小虎, 裴继斌, 王赛, 张国梁. 纯铜动态再结晶过程的元胞自动机模拟[J]. 金属学报, 2008; 44(3): 292-296) [15] Mukhopadhyay P, Loeck M, Gottstein G. A cellular operator model for the simulation of static recrystallization. Acta Mater, 2007,55(2):551-564 [16] Zheng C W, Xiao N M, Li D Z, Li Y Y. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling[J]. Comput Maters Sci, 2008; 44(2): 507-514. [17] Xiao N M, Zheng C W, Li D Z, Li Y Y. A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique[J]. Comput Maters Sci, 2008,41(3):366-374. [18] Guo J, Wang Y M, Li W, Wu D, Zhao X M. Cellular Automaton Simulation (I) in Static Recrystallization Process Microstructure Evolution and Dynamics Research[J]. Heavy Casting and Forging, 2009; 1(1) :20-24. (郭娟, 王艳梅, 李卫, 吴迪, 赵宪明. 静态再结晶过程的元胞自动机模拟(I)——微观组织演化和动力学研究[J]. 大型铸锻件, 2009; 1(1):20-24). [19] Chen L Q, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[J]. Phys Rev B, 1994; 50(21):15752-15756 [20] Fan D,Chen L Q. Computer simulation of grain growth using a continuum field model[J]. Acta Mater,1997; 45(2): 611-622 [21] Moelans N, Blanpain B, Wollants P. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles[J]. Acta Mater, 2006; 54(4):1175-1184. [22] Suwa Y, Saito Y. Phase field simulation of grain growth containing finely dispersed second-phase particle[J]. Scr Mater, 2006; 55(4): 407-410 [23] Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R. Phase-field simulation of two-phase grain growth with hard particles[J]. Acta Metall Sin, 2009; 45(10):1190-1198 (高英俊, 张海林, 金星, 黄创高, 罗志荣. 相场方法研究硬质粒子钉扎的两相晶粒长大过程[J]. 金属学报, 2009; 45(10): 1190-1198) [24] Vedantam S, Mallick A. Phase-field theory of grain growth in the presence of mobile second-phase particles[J]. Acta Mater, 2010; 58 (1):272–281 [25] Suwa Y, Saito Y, Onodera H. Phase field simulation of stored energy driven interface migration at a recrystallization front[J]. Mater Sci Eng, 2007; A457:132-138 [26] Suwa Y, Saito Y, Onodera H. Phase-field simulation of recrystallization based on the unified subgrain growth theory[J]. Comput Maters Sci, 2008; 44(2): 286-295 [27] Takaki T, Yamanaka A, Higa Y, Tomita Y. Phase-field model during static recrystallization based on crystal-plasticity theory[J]. J Computer-Aided Mater. Des, 2007; 14: 75-84 [28] Wang M T, Zong B Y, Wang G. Grain growth in AZ31 Mg alloy during recrystallization at different temperatures by phase field simulation. Comput Maters Sci, 2009; 45(2): 217-222 [29] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A and Tomita Y. J Crystal Growth, 2008; 310: 2248 [30] Li Y L and Chen L Q. Appl Phys Lett, 2006; 88: 072905 [31] Wang Y U. Acta Mater, 2006; 54: 953 [32] Li W, Gao L. Scr Mater, 2001; 44: 2269 [33] Guyer J E, Boittinger W J. Phys Rev, 2004; 69E: 021603 [34] Ramanarayan H, Abinandanan T A. Acta Mater, 2004; 52: 921 [35] Sreekala S, Haataja M. Phys Rev, 2007; 76B: 094109 [36] Cahn R W, Materials Science and Technology, Vol.15. Beijing: Science Press, 1999: 360 (R W 卡恩 主编. 材料科学与技术丛书(第15卷),北京: 科学出版社,1999: 360) [37] Oono Y, Pori S. Phys Rev Lett, 1987; 58(8): 836 [38] Zheng C W, Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Metall Sin, 2006; 42(5):474-480 (郑成武,兰永军,肖纳敏,李殿中,李依依. 热变形低碳钢中奥氏体静态再结晶模拟[J]. 金属学报, 2006; 42(5): 474-480) [39] Ye W P, Gell R L, Saindrenan G. A study of the recrystallization of an IF steel by kinetics models. Mater Sci Eng, 2002; A332: 41-47 [40] Liu R C, Wang L Y, Gu L G, Huang G S. Light Alloy Fabric Technol, 2004; 32: 22-25 (刘饶川,汪凌云,辜蕾钢,黄光胜. 轻合金加工技术,2004; 32: 22-25)
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[7] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[10] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[11] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[12] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[13] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[14] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[15] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
No Suggested Reading articles found!