PHASE FIELD SIMULATION OF STATIC RECRYSTALLIZATION FOR AZ31 Mg ALLOY
GAO Yingjun 1,2,3, LUO Zhirong 1,2, HU Xiangying 1, HUANG Chuanggao 1
1. College of Physics Science and Engineering, Guangxi University, Nanning 530004
2. Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning 530004
3. International Center for Materials Physics, Chinese Academy of Science, Shenyang 110016
Cite this article:
GAO Yingjun LUO Zhirong HU Xiangying HUANG Chuanggao. PHASE FIELD SIMULATION OF STATIC RECRYSTALLIZATION FOR AZ31 Mg ALLOY. Acta Metall Sin, 2010, 46(10): 1161-1172.
Abstract In order to obtain the deformation grain structure for static recrystallization, an initial grain structure are produced by lattice deformation model; aiming at characteristics of different deformation regions and non–uniform distribution of the stored energy in deformed alloy, a multistate free energy (MSFE) function are proposed by introducing a weight factor for the stored energy and a characteristics state factor for different deformed regions. Based on these, the microstructure evolutions of static recrystallization for deformed Mg alloys are simulated by phase field model. The transformation dynamic curve of recrystallization, Avrami curve, and the regularity for stored energy releaing and distribution of grain size in recrytallization process are systematically analyzed. The dynamic regularity of statc recrystallization obtained by simulating is in good accord with the JMAK theory, and the Avramcurve by simulating can be regard as a linear with average slopes 2.45, 2.35, 2.19 and 2.15, respectively. The Avrami time index decreases with the true strain increasing. The stored energy releases faster, and the lasting time of static recrystallization process is shorter when the true strain is greater. Based on the established MSFE model, the simulation results here are in good agreement with the other theoretical results and experimntal results.
Supported by National Natural Science Foundation of China (Nos.50661001 and 50061001) and Natural Science Foundation of Guangxi Province (Nos.0991026, 0832029 and 0639004)
[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater Sci Eng, 2001; A302:37-45
[2] Hakamada M, Furuta T, Chino Y, Chen Y Q, Kusuda H, Mabuchi M, Mamoru Mabuchi. Life cycle inventory study on magnesium alloy substitution in
vehicles[J]. Energy, 2007; 32(8):1352-1360
[3] Kancko T, Suzuki M. Automotive Applications of Magnesium Alloys[J]. Mater Sci Forum, 2003; 419-422: 67-72
[4] Agnew S R, Senn J W, andHorton J . Mg Sheet Metal Forming: Lessons Learned from Deep Drawing Li and Y Solid-Solution Alloys[J]. JOM, 2006;
58(5):62-69
[5] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M], Elsevier Science, Oxford, UK, 1995
[6] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J. Current issues in recrystallization: a review[J]. Mater Sci Eng, 1997; A238:219-274
[7] Liss K D, Garbe U, Li H J, Thomas S, Jonathan D A,Yan K. Adv Eng Mater, 2009; 11(8): 637-640
[8] Song X Y, Rettenmayr M. Modelling study on recrystallization,recovery and their temperature dependence in inhomogeneously deformed materials[J]. Mater Sci Eng, 2002; A332:153-160
[9] Walasek T A. Experimental verification of Monte Carlo recrystallization model[J]. J Mater Process Technol, 2004; 157-158:262-267
[10] Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium[J]. Acta Mater, 2006; 54(14):3673-3689
[11] Guan X J, Zhang J X and Sun S. Computer Simulation for Recrystallization of Deformed Metal[J]. Special Steel. 2004; 25(3): 34-37
(关小军, 张继详, 孙胜. 变形金属再结晶过程计算机模拟. 特殊钢, 2004,25(3):34-37)
[12] Zhang J X. PhD Dissertation, Shandong University, Jinan, 2006
(张继详. 基于Monte Carlo方法的材料退火过程模拟模型及计算机仿真关键技术研究[D]. 山东大学博士学位论文,济南,2006 )
[13] Kazeminezhad M. On the modeling of the static recrystallization considering the initial grain size effects[J]. Mater Sci Eng, 2008; A486:202-207
[14] Lu Y, Zhang L W, Deng X H, Pei J B, Wang S, Zhang G L. Modeling Dynamic Recrystalization of Pure Copper Using Cellular Automaton
Method[J]. Acta Metall Sin, 2008; 44(3):292-296
(卢瑀, 张立文, 邓小虎, 裴继斌, 王赛, 张国梁. 纯铜动态再结晶过程的元胞自动机模拟[J]. 金属学报, 2008; 44(3): 292-296)
[15] Mukhopadhyay P, Loeck M, Gottstein G. A cellular operator model for the simulation of static recrystallization. Acta Mater, 2007,55(2):551-564
[16] Zheng C W, Xiao N M, Li D Z, Li Y Y. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling[J]. Comput Maters Sci, 2008; 44(2): 507-514.
[17] Xiao N M, Zheng C W, Li D Z, Li Y Y. A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation
technique[J]. Comput Maters Sci, 2008,41(3):366-374.
[18] Guo J, Wang Y M, Li W, Wu D, Zhao X M. Cellular Automaton Simulation (I) in Static Recrystallization Process Microstructure Evolution and Dynamics Research[J]. Heavy Casting and Forging, 2009; 1(1) :20-24.
(郭娟, 王艳梅, 李卫, 吴迪, 赵宪明. 静态再结晶过程的元胞自动机模拟(I)——微观组织演化和动力学研究[J]. 大型铸锻件, 2009; 1(1):20-24).
[19] Chen L Q, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[J]. Phys Rev B, 1994; 50(21):15752-15756
[20] Fan D,Chen L Q. Computer simulation of grain growth using a continuum field model[J]. Acta Mater,1997; 45(2): 611-622
[21] Moelans N, Blanpain B, Wollants P. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles[J]. Acta Mater, 2006; 54(4):1175-1184.
[22] Suwa Y, Saito Y. Phase field simulation of grain growth containing finely dispersed second-phase particle[J]. Scr Mater, 2006; 55(4): 407-410
[23] Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R. Phase-field simulation of two-phase grain growth with hard particles[J]. Acta Metall Sin, 2009; 45(10):1190-1198
(高英俊, 张海林, 金星, 黄创高, 罗志荣. 相场方法研究硬质粒子钉扎的两相晶粒长大过程[J]. 金属学报, 2009; 45(10): 1190-1198)
[24] Vedantam S, Mallick A. Phase-field theory of grain growth in the presence of mobile second-phase particles[J]. Acta Mater, 2010; 58 (1):272–281
[25] Suwa Y, Saito Y, Onodera H. Phase field simulation of stored energy driven interface migration at a recrystallization front[J]. Mater Sci Eng, 2007; A457:132-138
[26] Suwa Y, Saito Y, Onodera H. Phase-field simulation of recrystallization based on the unified subgrain growth theory[J]. Comput Maters Sci, 2008; 44(2): 286-295
[27] Takaki T, Yamanaka A, Higa Y, Tomita Y. Phase-field model during static recrystallization based on crystal-plasticity theory[J]. J Computer-Aided Mater. Des, 2007; 14: 75-84
[28] Wang M T, Zong B Y, Wang G. Grain growth in AZ31 Mg alloy during recrystallization at different temperatures by phase field simulation. Comput Maters Sci, 2009; 45(2): 217-222
[29] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A and Tomita Y. J Crystal Growth, 2008; 310: 2248
[30] Li Y L and Chen L Q. Appl Phys Lett, 2006; 88: 072905
[31] Wang Y U. Acta Mater, 2006; 54: 953
[32] Li W, Gao L. Scr Mater, 2001; 44: 2269
[33] Guyer J E, Boittinger W J. Phys Rev, 2004; 69E: 021603
[34] Ramanarayan H, Abinandanan T A. Acta Mater, 2004; 52: 921
[35] Sreekala S, Haataja M. Phys Rev, 2007; 76B: 094109
[36] Cahn R W, Materials Science and Technology, Vol.15. Beijing: Science Press, 1999: 360
(R W 卡恩 主编. 材料科学与技术丛书(第15卷),北京: 科学出版社,1999: 360)
[37] Oono Y, Pori S. Phys Rev Lett, 1987; 58(8): 836
[38] Zheng C W, Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Metall Sin, 2006; 42(5):474-480
(郑成武,兰永军,肖纳敏,李殿中,李依依. 热变形低碳钢中奥氏体静态再结晶模拟[J]. 金属学报, 2006; 42(5): 474-480)
[39] Ye W P, Gell R L, Saindrenan G. A study of the recrystallization of an IF steel by kinetics models. Mater Sci Eng, 2002; A332: 41-47
[40] Liu R C, Wang L Y, Gu L G, Huang G S. Light Alloy Fabric Technol, 2004; 32: 22-25
(刘饶川,汪凌云,辜蕾钢,黄光胜. 轻合金加工技术,2004; 32: 22-25)