Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1153-1160    DOI: 10.3724/SP.J.1037.2010.00283
论文 Current Issue | Archive | Adv Search |
BEHAVIOR OF MARTENSITE REVERSE TRANSFORMATION IN A HIGH MANGANESE TRIP STEEL DURING WARM DEFORMATION
LU Fayun, YANG Ping, MENG Li, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

LU Fayun YANG Ping MENG Li MAO Weimin. BEHAVIOR OF MARTENSITE REVERSE TRANSFORMATION IN A HIGH MANGANESE TRIP STEEL DURING WARM DEFORMATION. Acta Metall Sin, 2010, 46(10): 1153-1160.

Download:  PDF(2964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  High manganese steels show significant potential for industrial application due to their remarkable TRIP/TWIP effects at room temperature. The study on the TRIP behavior during warm deformation is important in controlling microstructures and properties of high manganese steels. In this paper, the microstructures, phase structures and reverse transformation of martensites to austenite in a high manganese steel which is composed of two types of martensites and austenite were investigated under warm deformation (100—500℃) by means of the determination of transformation temperature, calculation of phase diagram, microstructure observation, XRD analysis and EBSD orientation imaging technique. Results show that during compression above 300 ℃, TRIP effect disappeared and reverse transformation from martensite to austenite was enhanced. The transformation from bcc martensite to austenite was determined to be diffusive and no nucleation of austenite was needed. The warm deformation of austenite leads to the formation of coarse deormation twins and the mechanical stabilization of austenite, which suppressed the subsequent martensitic transformation during quenching. The austeniic grains in which reverse martensitic transformation completed at the latest, show mainly {110} and {100} orientations. In addition, hcp martensite could hardly edetected around bcc martensite, and the transformation of hcp martensite into austenite is regarded to be reversible and diffusionless.
Key words:  18Mn steel      warm deformation      TRIP effect      reverse transformation of martensite     
Received:  13 June 2010     
ZTFLH: 

TG111.5,TG142.33

 
Fund: 

Supported by National Natural Science Foundation of China (No.50771019) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20090006110013)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00283     OR     https://www.ams.org.cn/EN/Y2010/V46/I10/1153

[1] Zhang F C, Lei T Q. Wear, 1997;212: 195 [2] Gr?ssel O, Krüger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391 [3] Frommeryer G, Brüx U, Neumann P. ISIJ Int, 2003; 43: 438 [4] Curtze S, Kuokkala V-T, Hokka M, Peura P. Mater Sci Eng, 2009; A507: 124 [5] Byun T S, Hashimoto N, Farrell K. Acta Mater, 2004; 52: 3889 [6] Sawaguchi T, Bujoreanu L-G, Kikuchi T, Ogawa K, Koyamaa M, Murakamic M. Scr Mater, 2008; 59: 826 [7] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1998; A242: 87 [8] Stalder M, Vogel S, Bourke M A M, Maldonado J G, Thoma D J, Yuan V W. Mater Sci Eng, 2000; A280: 270 [9]Gauzzi F, Montanari R, Principi G, Tata M E. Mater Sci Eng, 2006; A438-440: 202 [10] Tavares S S M, Fruchart D, Miraglia S. J Alloys Compd, 2000; 307: 311 [11] Kundu S, Bhadeshia H K D H. Scr Mater, 2007; 57: 869 [12] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279 [13] Zhang M-X, Kelly P M, Gates J D. Mater Sci Eng,1999; A273-275: 251 [14] Gauzzi F, Montanari R. Mater Sci Eng, 1999; A273-275: 524 [15] Lee Se-J, Park Y-M, Lee Y-K. Mater Sci Eng, 2009; A515: 32 [16] Leem D-S, Lee Y-D, Jun J-H, Choi C-S. Scr Mater, 2001; 45: 767 [17] Gey N, Petit B, Humbert M. Metall Mater Trans, 2005; A36: 3291
[1] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[2] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[3] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[4] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[5] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[6] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[7] Feng YANG, Haiwen LUO, Han DONG. Effects of Intercritical Annealing Temperature on the Tensile Behavior of Cold Rolled 7Mn Steel and the Constitutive Modeling[J]. 金属学报, 2018, 54(6): 859-867.
[8] Kai ZHU, Cuilan WU, Pan XIE, Mei HAN, Yuanrui LIU, Xiangge ZHANG, Jianghua CHEN. Microstructure and Mechanical Properties of an Austenite/Ferrite Laminate Structured High-Manganese Steel[J]. 金属学报, 2018, 54(10): 1387-1398.
[9] REN Yongqiang XIE Zhenjia SHANG Chengjia. REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL[J]. 金属学报, 2012, 48(9): 1074-1080.
[10] ZHANG Weina LIU Zhengyu WANG Guodong. MARTENSITIC TRANSFORMATION INDUCED BY DEFORMATION AND WORK–HARDENING BEHAVIOR OF HIGH MANGANESE TRIP STEELS[J]. 金属学报, 2010, 46(10): 1230-1236.
[11] CHEN Wei LI Longfei SUN Zuqing ZHANG Yan YANG Wangyue. ULTRAFINED MICROSTRUCTURE OF HYPEREUTECTOID STEEL BY WARM DEFORMATION OF MARTENSITE[J]. 金属学报, 2009, 45(6): 697-703.
[12] CHEN Wei LI Longfei YANG Wangyue SUN Zuqing HE Jianping. MICROSTRUCTURE EVOLUTION OF HYPEREUTECTOID STEELS DURING WARM DEFORMATION I. Formation of Equiaxial Ferrite and Effects of Al[J]. 金属学报, 2009, 45(2): 151-155.
[13] CHEN Wei LI Longfei YANG Wangyue SUN Zuqing ZHANG Yan. MICROSTRUCTURE EVOLUTION OF HYPEREUTECTOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al[J]. 金属学报, 2009, 45(2): 156-160.
[14] YANG Xuyue ZHANG Lei. TWINNING AND TWIN INTERSECTION IN AZ31 Mg ALLOY DURING WARM DEFORMATION[J]. 金属学报, 2009, 45(11): 1303-0308.
No Suggested Reading articles found!