Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1173-1180    DOI: 10.3724/SP.J.1037.2010.00266
论文 Current Issue | Archive | Adv Search |
SIMULATION OF SCALE DEPENDENCY ON TENSILE MECHANICAL PROPERTIES OF SINGLE CRYSTAL COPPER NANO–ROD
BAI Qingshun, TONG Zhen, LIANG Yingchun, CHEN Jiaxuan, WANG Zhiguo
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001
Cite this article: 

BAI Qingshun TONG Zhen LIANG Yingchun CHEN Jiaxuan WANG Zhiguo. SIMULATION OF SCALE DEPENDENCY ON TENSILE MECHANICAL PROPERTIES OF SINGLE CRYSTAL COPPER NANO–ROD. Acta Metall Sin, 2010, 46(10): 1173-1180.

Download:  PDF(4862KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The tension process of single crystal Cu nano–rods with different cross section shapes were simulated by molecular dynamics at atomic scale. Based on centrosymmetry parameter method and combined with the dislocation nucleation theory, the effect of cross–section shape, cross–sectional area and slenderness ratio on the tensile mechanical properties of the nano–rods were analyzed, and the scale dependency of tensile mechanical properties of the single crystal Cu nano–rods has been revealed. The results show that after first yield, the nano–rods produce plastic deformation under the "dislocation nucleation–extended dislocation and sliding–lattice atom cross–slip" mechanism of the alternating cycle. The geometry of cross-section has negligible effects on the tensile initial plasticity of the nano–rods, while it shows apparent effects on the tensile mechanical properties. With the increase of cross–sectional area, two types of nano–rods have the phenomenon of early yield point, yield strength decreases and young’modulus increases. Compared with that of the square cross–sectional nano–rod, the variable rate of yield stess of the circular cross-sectional nano–rod is smaller while the variable rate of young’s modulus is lager. As the cross–sectional area increases to 500 nm2, the young’s modulus of the two types of nano–rods become stable, and is close to the theoretical value of 84 GPa. Moreover, the slenderness ratio of the nano–rods has a slight effect on the tensile mechanical properties when the simulation size increased.
Key words:  molecular dynamics      tension      nano–ro      islocation nucleation      mechanical properties     
Received:  03 June 2010     
ZTFLH: 

TG113.25

 
  TB303

 
Fund: 

Supported by National Funds for Distinguished Young Scholars (No.50925521) and National Natural Science Foundation of China (No.50705023) and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No.HIT.NSRIF.2009012) and Natural Science Foundation of Heilongjiang Province in China (No.E200903)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00266     OR     https://www.ams.org.cn/EN/Y2010/V46/I10/1173

[1] Craihead HG. Science, 2000; 290(24): 1532 [2] Michalske TA, Houston JE. Acta Mater, 1998; 46(2): 391 [3] Greer JR, Oliver WC, Nix WD. Acta Mater, 2005; 53: 1821 [4] R. Komanduri, R. N. Chandrasekaran, L. M. Raff. Science. 2001; 43: 2237 [5] LING Haiyi, NI Xianggui, WANG Xiuxi. Acta Metall Sin, 2001; 37(8): 833 (梁海弋,倪向贵,王秀. 金属学报,2001; 37(8): 833) [6] Liang Haiyi, Wang Xiuxi, Wu Hengan. Acta Mech Sin, 2002; 34(2): 208 (梁海弋,王秀喜,吴恒安,王宇. 力学学报,2002; 34(2): 208) [7] XU Zhou, WANG Xiuxi, LIANG Haiyi. Chinese Journal of Materials Research, 2003; 17(3): 262 (徐洲,王秀喜,梁海弋. 材料研究学报,2003; 17(3): 262) [8] Doyama M, Kogure Y, Nozaki T, Kato Y. Phys Rev, 2003; 202B: 64 [9] T. Nozaki, Masao Doyama, Y. Kogure. Mater Sci Eng A, 2003; 350: 233 [10] Huang Dan, Tao Weiming, Guo Yimu. Acta Mech Solida Sin, 2005; 26(2): 241 (黄丹,陶伟明,郭乙木. 固体力学学报,2005; 26(2): 241) [11]LIANG Yingchun, CHEN Jiaxuan, BAI Qingshun. Acta Metall Sin, 2008; 44(8): 119 (梁迎春,陈家轩,白清顺,唐玉兰,陈明君. 金属学报,2008; 44(8): 119) [12] M. A. Tschopp, D.L. McDowell. J Mech Phys Solids, 2008; 56: 1806 [13] Ning Zhang, Xinhua Yang, Chuanyao Chen. Acta Mech Solida Sin, 2009; 30(3): 231 (张宇,杨新华,陈传尧. 固体力学学报,2009; 30(3): 231) [14] Daw M S, Baskes M I. Phys Rev B, 1984; 29(12): 8486 [15] Diao J K, Gall K, Dunn M L, Zimmerman J A. Acta Mater, 2006; 54: 643 [16] Swope W C, Anderson H C, Berens P H, Wilson K R. J Chem Phys, 1982; 76:637 [17] Nose S A. J Chem Phys, 1984; 84: 511 [18] Hoover W G. Phys Rev, 1985; 31A: 1695 [19] Kelchner C L, Plimpton S J, Hamilton J C. Phys Rev, 1998; 58B: 11085 [20] Guo Yu, Zhuang Zhuo, Li Xiaoyan. Chin J Theoretical and Applied Mech, 2006; 38(3): 398 (郭宇,庄茁,李晓雁. 力学学报,2006; 38: 398) [21] Hirth JP, Lothe J. Theory of Dislocations. New York: John Wiley and Sons, 1982; 757 [22] Mizubayashi H, Matsuno J, Tanimoto H. Scripta Materialia, 1999; 41(4): 443
[1] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[2] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[3] CAO Furong, DING Xin, XIANG Chao, SHANG Huihui. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. 金属学报, 2021, 57(7): 860-870.
[4] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[5] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[7] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[8] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[9] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[10] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[11] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[12] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[13] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[14] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[15] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
No Suggested Reading articles found!