Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (3): 125-129    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF PRE-STRAINING TEMPERATURE OF AUSTENITE ON IMPROVEMENT OF SME IN Fe-Mn-Si ALLOY
RONG Lijian; LI Yiyi;SHI Changxu (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)
Cite this article: 

RONG Lijian; LI Yiyi;SHI Changxu (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). EFFECT OF PRE-STRAINING TEMPERATURE OF AUSTENITE ON IMPROVEMENT OF SME IN Fe-Mn-Si ALLOY. Acta Metall Sin, 1995, 31(3): 125-129.

Download:  PDF(359KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of 3% pre-straining of austenite on the improvement of SME in Fe-29.9% Mn-6.0%Si has been studied over the temperature range of 573-1073 K. Results show that recovery strain (εtr). shape recovery ratio (η) and strain corresponding to the saturation εtr for the solution treated samples deformed at room temperature have been improved significantly by pre-straining of austenite. The ηfor the samples with ~2.5% deformatin at room temperature increases with pre-straining temperature and the maximum ηcan be reached by pre-straining at 973 K when dynamic recrystallization has just occurred. After pre-straing at 973 K, the maximum εtr has been increased from 1.7% for solution treated sample to 3.8% and the complete recovery strain can reach 2.2%. It is believed that the pre-straining of austenite is to decrease the critical stress for the formation of ε martensite.

Key words:  : Fe-Mn-Sialloy      pre-straining      shape memory effect      dynamic recrystallization     
Received:  18 March 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I3/125

1SatoA.ChishimaK.SomaK.MoriT.Actametall.1982;30:11772SatoA,ChishmaE.YamajiY.MoriT.Actametall,1984;32:5393SatoA.SomaK.MoriT.Actametall1982;30:19014WaymanCM.ProgressinMaterSci,1992;36:2035WangXX.ZhaoLC,ScrMetall.1992;26:14516OtsukaH.YamadaH.TanahashiH.MaruyamaT.MaterSciForum,1990;56-58:6557OtsukaH.YamadaHetal.ISIJInt,1990;30:6748MurakamiM.OtsukaH.MatsudaS.TransISIJ,1987;27:E899刘国勋.金属学原理.北京:冶金工业出版社,1979:34610RobinsionJS.McCormickPG.ScrMetall.1989;23:1975

[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[4] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[7] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[9] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[10] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[11] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[12] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[15] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
No Suggested Reading articles found!