Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (10): 1401-1410    DOI: 10.11900/0412.1961.2020.00074
Current Issue | Archive | Adv Search |
Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc
ZHANG Yong1(), LI Xinxu1, WEI Kang1, WAN Zhipeng1, JIA Chonglin1, WANG Tao1, LI Zhao1, SUN Yu2, LIANG Hongyan3
1 Key Laboratory of Science & Technology on Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
Cite this article: 

ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc. Acta Metall Sin, 2020, 56(10): 1401-1410.

Download:  HTML  PDF(3699KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of aero-engine in the direction of high thrust ratio, high efficiency and high reliability, the indicators of temperature resistance of cast & wrought superalloys are getting higher and higher. For the demand of aero-engine, the wrought superalloy materials used for aero engine turbine disc have been made remarkable progress. Form heat-resistant steel which temperature capability reaches 550 ℃ to iron-nickel based superalloy used at 650 ℃, and the high alloyed wrought superalloy with service temperature of 750 ℃ have been developed. The nickel-based wrought superalloy GH4975 is a high strength, complex alloying, hard-deformed wrought turbine disc alloy, which can be used at 850 ℃. In the study, the thermal deformation behavior of GH4975 extruded rod prepared by vacuum induction melting (VIM) and vacuum arc remelting (VAR) was studied by thermal simulation machine with the temperature range of 1070~1220 ℃ and strain rate range of 0.001~1 s-1. The results show that the stress-strain curves of GH4975 alloy are divided into three stages: strain hardening, flow softening and steady state rheology, exhibiting typical dynamic recrystallization characteristics. The constitutive equation of GH4975 extruded rod was established and the hot deformation activation energy was calculated as 664587 J/mol. Besides, the processing maps of GH4975 alloy were drawn based on the dynamic material model (DMM), and the suitable processing parameters are determined by combining with microstructure observation. The dynamic recrystallization easily occurs at the deformation temperature range of 1100~1130 ℃, and the nucleation mechanisms were elaborated to be strain inducing grain boundary.

Key words:  turbine disc      wrought superalloy      GH4975      extrusion      hot deformation      dynamic recrystallization     
Received:  04 March 2020     
ZTFLH:  TG146.1  
Fund: Preparatory Studies Fund Project(9140C4302XX)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00074     OR     https://www.ams.org.cn/EN/Y2020/V56/I10/1401

Fig.1  Microstructures of GH4975 alloy bar corroded after extrusion and recrystallization(a) OM image(b) SEM image(c) prime γ' phase
Fig.2  True stress-true strain curves of GH4975 superalloy obtained under deformation temperatures of 1070 ℃ (a), 1100 ℃ (b), 1130 ℃ (c), 1150 ℃ (d), 1180 ℃ (e) and 1220 ℃ (f) at different strain rates
Fig.3  Relationships between lnε˙ and lnσ (a), lnε˙ and σ (b), lnε˙ and ln[sinh(ασ)] (c), ln[sinh(ασ)] and 1000/T (d), lnZ and ln[sinh(ασ)] (e) (ε˙—strain rate; σ—stress; α, β and A—material constants; Z—Zener-Hollomon parameter; T—temperature; n and n1—stress exponents; r2—correlation coefficient)
Fig.4  Comparison between the experimental values and predicted values by Arrhenius model
Fig.5  Processing map of GH4975 superalloy at the strain of 0.8 (Gray area represents instability region) and microstructure validation of different deformation region (Contour value is powder dissipation rate)
Fig.6  Effect of deformation temperature on the microstructures of GH4975 superalloy under the strain rate of 0.1 s-1(a) 1070 ℃ (b) 1100 ℃ (c) 1130 ℃ (d) 1150 ℃ (e) 1180 ℃ (f) 1220 ℃
Fig.7  Effect of strain rate on the microstructures of GH4975 superalloy under a certain temperature of 1130 ℃
(a) 1 s-1 (b) 0.1 s-1 (c) 0.01 s-1 (d) 0.001 s-1
Fig.8  TEM images of microstructures of GH4975 superalloy deformed at 1150 ℃, 0.001 s-1 (a), 1180 ℃, 0.1 s-1 (c) and 1180 ℃, 1 s-1 (d); Hereinto, Fig.8b is the selected area electron diffraction pattern (SAEDP) of Fig.8a, which is to identify the γ′ precipitates
[1] Tian S F, Zhang G Q, Li Z, et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J. Aeronaut. Mater., 2003, 23(suppl.1): 233
(田世藩, 张国庆, 李 周等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(): 233)
[2] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
(刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
doi: 10.11900/0412.1961.2018.00340
[3] Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
[4] Huang Q Y, Li H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000: 4
(黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4)
[5] Luo J T, Yu W L, Xi C Y, et al. Preparation of ultrafine-grained GH4169 superalloy by high-pressure torsion and analysis of grain refinement mechanism [J]. J. Alloys Compd., 2019, 777: 157
doi: 10.1016/j.jallcom.2018.10.385
[6] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
(刘永长, 郭倩颖, 李 冲等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259)
doi: 10.11900/0412.1961.2016.00290
[7] Zhang X, Li H W, Zhan M, et al. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36: 79
doi: 10.1016/j.jmst.2019.08.008
[8] Zhang H J, Li C, Liu Y C, et al. Effect of hot deformation on γ" and δ phase precipitation of Inconel 718 alloy during deformation & isothermal treatment [J]. J. Alloys Compd., 2017, 716: 65
doi: 10.1016/j.jallcom.2017.05.042
[9] Kennedy R L. Allvac® 718PlusTM, superalloy for the next forty years [A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Pittsburgh: TMS, 2005: 1
[10] Cao W D, Kennedy R. Role of chemistry in 718-type alloys-Allvac® 718PlusTM alloy development [A]. Superalloys 2004 [C]. Pittsburgh: TMS, 2004: 91
[11] Heaney J A, Lasonde M L, Powell A M, et al. Development of a new cast and wrought alloy (René 65) for high temperature disk applications [A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives [C]. New York: John Wiley & Sons, 2014: 67
[12] Devaux A, Picqué B, Gervais M F, et al. AD730TM—A new nickel-based superalloy for high temperature engine rotative parts [A]. Superalloys 2012 [C]. Pennsylvania: TMS, 2012: 911
[13] Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
doi: 10.11900/0412.1961.2015.00442
(谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191)
doi: 10.11900/0412.1961.2015.00442
[14] Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
doi: 10.11900/0412.1961.2019.00089
(毕中南, 秦海龙, 董志国等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160)
doi: 10.11900/0412.1961.2019.00089
[15] Wang Z X, Huang S, Zhang B J, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
doi: 10.11900/0412.1961.2018.00218
(王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417)
doi: 10.11900/0412.1961.2018.00218
[16] Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater. 2016, 36(3): 27
(杜金辉, 赵光普, 邓 群等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27)
doi: 10.11868/j.issn.1005-5053.2016.3.005
[17] Fu R, Chen X C, Ren H, et al. Structure and hot deformation behavior of ESR-CDS René88DT [J]. J. Aeronaut. Mater., 2011, 31(3): 8
(付 锐, 陈希春, 任 昊等. 电渣重熔连续定向凝固René88DT合金的组织与热变形行为 [J]. 航空材料学报, 2011, 31(3): 8)
[18] Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
[19] Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1996, 14: 1136
doi: 10.1016/0001-6160(66)90207-0
[20] Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy [J]. Mater. Sci. Eng., 2016, A677: 515
[21] Wen D X, Lin Y C, Li X H, et al. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase [J]. J. Alloys Compd., 2018, 764: 1008
doi: 10.1016/j.jallcom.2018.06.146
[22] Wu Y T, Liu Y C, Li C, et al. Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression [J]. J. Alloys Compd., 2017, 712: 687
doi: 10.1016/j.jallcom.2017.04.116
[23] Prasad Y V R K, Sasidhara S. Hot Working Guide: A Compendium of Processing Maps [M]. Materials Park, OH: ASM International, 1997: 1224
[24] Monajati H, Taheri A K, Jahazi M, et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy [J]. Metall. Mater. Trans., 2005, 36A: 895
[25] Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
(吴 静, 刘永长, 李 冲等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 [J]. 金属学报, 2020, 56: 21)
[26] Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression [J]. J. Alloys Compd., 2019, 795: 471
doi: 10.1016/j.jallcom.2019.04.319
[27] Wang X G, Han G M, Cui C Y, et al. On the γ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 84
doi: 10.1016/j.jmst.2018.09.014
[28] Chen M S, Zou Z H, Lin Y C, et al. Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method [J]. J. Mater. Sci. Technol., 2019, 35: 1403
doi: 10.1016/j.jmst.2018.11.026
[29] Wu J, Li C, Liu Y C, et al. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy [J]. Mater. Sci. Eng., 2019, A743: 623
[30] Popov A A. Effect of electronic nature and substitution behavior of ternary microadditions on the ductility of polycrystalline nickel aluminides [J]. Acta Mater., 1997, 45: 1613
doi: 10.1016/S1359-6454(96)00271-6
[31] Wu Y T, Liu Y C, Li C, et al. Coarsening behavior of γ′ precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
doi: 10.1016/j.jallcom.2018.08.265
[32] Dai L, Liu Z, Yu L M, et al. Microstructural characterization of Mg-Al-O rich nanophase strengthened Fe-Cr alloys [J]. Mater. Sci. Eng., 2020, A771: 138664
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[8] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[9] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[10] ZHANG Rui, LIU Peng, CUI Chuanyong, QU Jinglong, ZHANG Beijiang, DU Jinhui, ZHOU Yizhou, SUN Xiaofeng. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China[J]. 金属学报, 2021, 57(10): 1215-1228.
[11] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[12] ZHANG Yong, LI Xinxu, WEI Kang, WEI Jianhuan, WANG Tao, JIA Chonglin, LI Zhao, MA Zongqing. Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting[J]. 金属学报, 2020, 56(8): 1123-1132.
[13] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[14] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[15] XIANG Xuemei, JIANG He, DONG Jianxin, YAO Zhihao. As-Cast Microstructure Characteristic and Homogenization of a Newly Developed Hard-Deformed Ni-Based Superalloy GH4975[J]. 金属学报, 2020, 56(7): 988-996.
No Suggested Reading articles found!