Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (1): 180-190    DOI: 10.11900/0412.1961.2022.00425
Research paper Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition
CHEN Fei1,2,3(), QIU Pengcheng1, LIU Yang1,2, SUN Bingbing4, ZHAO Haisheng4, SHEN Qiang1
1.State Key Laboratory of Advance e Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2.International School of Materials Science and Engineering (School of Materials and Microelectronics), Wuhan University of Technology, Wuhan 430070, China
3 Hubei Longzhong Laboratory, Xiangyang 441000, China
4 HFYC (Zhenjiang) Additive Manufacturing Co., Ltd., Zhenjiang 212132, China
Cite this article: 

CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition. Acta Metall Sin, 2023, 59(1): 180-190.

Download:  HTML  PDF(2852KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The NiTi alloy is a key material in aerospace and biomedical fields owing to its excellent superelasticity and high shape memory effect. Laser directed energy deposition (LDED), as an advanced additive manufacturing technology, made the preparation of NiTi alloys with high shape memory effect possible. In this study, the NiTi alloy was fabricated via LDED using Ni and Ti powder feedstock. The microstructure, phase content, and phase transformation of the alloy were analyzed by XRD, phase fitting, SEM, EDS, and DSC. Next, the shape memory effect was tested using compressed cylindrical samples. When the laser energy density was low, several Ni4Ti3 phases were produced in the NiTi alloy. The Ni4Ti3 phase disappeared with an increase in the laser energy density. When the laser energy density was 20.0 J/mm2, the NiTi alloy showed a high compressive breaking strength of 2878 MPa and a compression failure strain of 34.9%, and the sample also showed a shape recovery rate of 88.2% after 20 cyc of compression.

Key words:  laser directed energy deposition      laser in situ synthesis      NiTi shape memory alloy      shape memory effect     
Received:  31 August 2022     
ZTFLH:  TG139.6  
Fund: National Natural Science Foundation of China(51972246);Guangdong Major Project of Basic and Applied Basic Research(2021B0301030001);Independent Innovation Projects of the Hubei Longzhong Laboratory(2022ZZ-32)
About author:  CHEN Fei, professor, Tel: (027)87884448, E-mail: chenfei027@whut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00425     OR     https://www.ams.org.cn/EN/Y2023/V59/I1/180

PowderNiTiFeCuCoCaMgHONC
Ni99.865-0.030.0080.0750.0080.002---0.012
Ti-99.927-----0.0010.0540.0050.013
Table 1  Chemical compositions of Ni and Ti powders
Fig.1  Size distributions and morphologies (insets) of Ni powder (a) and Ti powder (b) (D10, D50, and D90 indicate 10%, 50%, and 90% cumulative particle sizes, respectively)
Fig.2  XRD spectra (a) and phase fitting results of as-built NiTi alloys with E = 20.0 J/mm2 (b), 21.7 J/mm2 (c), 23.3 J/mm2 (d), and 25.0 J/mm2 (e) (E―laser energy density)
Fig.3  Variations of volume fractions of B19?, B2, and NiTi2 in as-built NiTi alloys with laser energy density
Fig.4  Relative densities and corresponding SEM images (insets) in x-z plane of as-built NiTi alloys with different laser energy densities
Fig.5  Low (a, c, e, g) and high (b, d, f, h) magnified SEM images of as-built NiTi alloys with E = 20.0 J/mm2 (a, b), 21.7 J/mm2 (c, d), 23.3 J/mm2 (e, f), and 25.0 J/mm2 (g, h)
EPoint in Fig.5Atomic fraction of NiAtomic fraction of TiNi∶Ti
J·mm-2%%
20.0b157.442.61.34
b259.540.51.47
21.7d149.150.90.96
d257.842.21.37
23.3f148.651.40.95
f234.165.90.52
25.0h148.651.40.95
h236.663.40.58
Table 2  EDS results of as-built NiTi alloys with different laser energy densities
Fig.6  TEM images of as-built NiTi alloys with E = 20.0 J/mm2 (a), 21.7 J/mm2 (b), 23.3 J/mm2 (c), and 25.0 J/mm2 (d) (Inset in Fig.6a shows the corresponding SAED pattern)
Fig.7  DSC curves of as-built NiTi alloys with E = 20.0 J/mm2 (a), 21.7 J/mm2 (b), 23.3 J/mm2 (c), and 25.0 J/mm2 (d) (Msmartensitic transformation start temperature, Mf—martensitic transformation end temperature, As—austenite transformation start temperature, Af—austenite transformation end temperature, ΔHM→A—austenite transformation enthalpy, ΔHA→M—martensite transformation enthalpy)
E / (J·mm-2)MsMfAsAf
20.068.937.271.9102.7
21.768.139.375.9107.1
23.371.340.076.5109.3
25.065.931.875.5111.2
Table 3  Characteristic temperatures in the phase transition of as-built NiTi alloys with different laser energy densities
Fig.8  Compressive stress-strain curves of as-built NiTi alloys (Inset shows the locally enlarged curve. Ⅰ—elastic deformation stage of twin martensite, Ⅱ—detwinning martensite stage, Ⅲ—elastic deformation stage of detwinning martensite, Ⅳ—plastic deformation stage of detwinning martensite, σc—critical stress of detwinning martensite)
E / (J·mm-2)σc / MPaσUCS / MPaδ / %
20.0313287834.9
21.7334241027.9
23.3342238626.5
25.0443231213.6
Table 4  Compressive properties of as-built NiTi alloys with different laser energy densities at room temperature
Fig.9  Compression stress-strain curves of as-built NiTi alloys with E = 20.0 J/mm2 (a), 21.7 J/mm2 (b), 23.3 J/mm2 (c), and 25.0 J/mm2 (d) for 20 cyc (εSME—recovery strain after heating, εrec—recovery strain before heating)
E / (J·mm-2)εrecεtotεSMEη
20.08.3833.6173.19088.2
21.77.3904.6103.93785.4
23.36.0225.9784.72979.1
25.06.5105.4904.05273.8
Table 5  Shape memory effects of as-built NiTi alloys under 20 cyc compression with different laser energy densities
1 Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review [J]. Prog. Mater. Sci., 2012, 57: 911
doi: 10.1016/j.pmatsci.2011.11.001
2 Marattukalam J J, Singh A K, Datta S, et al. Microstructure and corrosion behavior of laser processed NiTi alloy [J]. Mater. Sci. Eng., 2015, C57: 309
3 Cho G B, Kim K W, Ahn H J, et al. Applications of Ti-Ni alloys for secondary batteries [J]. J. Alloys Compds., 2008, 449: 317
doi: 10.1016/j.jallcom.2006.01.129
4 Lu B W, Cui X F, Liu E B, et al. Influence of microstructure on phase transformation behavior and mechanical properties of plasma arc deposited shape memory alloy [J]. Mater. Sci. Eng., 2018, A736: 130
5 Krishna B V, Bose S, Bandyopadhyay A. Laser processing of net-shape NiTi shape memory alloy [J]. Metall. Mater. Trans., 2007, 38A: 1096
6 Yao C, Yin F X, Ji P G, et al. Effects of grain refinement on the microstructures and damping behaviors of a Cu-Al-Ni-Mn-Ti shape memory alloy [J]. Intermetallics, 2021, 138: 107315
doi: 10.1016/j.intermet.2021.107315
7 Marattukalam J J, Balla V K, Das M, et al. Effect of heat treatment on microstructure, corrosion, and shape memory characteristics of laser deposited NiTi alloy [J]. J. Alloys Compds., 2018, 744: 337
doi: 10.1016/j.jallcom.2018.01.174
8 Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
9 Otubo J, Rigo O D, Neto C M, et al. The effects of vacuum induction melting and electron beam melting techniques on the purity of NiTi shape memory alloys [J]. Mater. Sci. Eng., 2006, A438-440: 679
10 Saedi S, Turabi A S, Andani M T, et al. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting [J]. Smart Mater. Struct., 2016, 25: 035005
11 Zhao C Y, Liang H L, Luo S C, et al. The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting [J]. J. Alloys Compds., 2020, 817: 153288
doi: 10.1016/j.jallcom.2019.153288
12 Zhang D Z, Li Y Z, Wang H, et al. Ultrasonic vibration-assisted laser directed energy deposition in-situ synthesis of NiTi alloys: Effects on microstructure and mechanical properties [J]. J. Manuf. Processes, 2020, 60: 328
doi: 10.1016/j.jmapro.2020.10.058
13 Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
14 Beyer C. Strategic implications of current trends in additive manufacturing [J]. J. Manuf. Sci. Eng., 2014, 136: 064701
15 Guo N N, Leu M C. Additive manufacturing: Technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215
doi: 10.1007/s11465-013-0248-8
16 Hassan M R, Mehrpouya M, Dawood S. Review of the machining difficulties of nickel-titanium based shape memory alloys [J]. Appl. Mech. Mater., 2014, 564: 533
doi: 10.4028/www.scientific.net/AMM.564.533
17 Kaynak Y. Machining and phase transformation response of room-temperature austenitic NiTi shape memory alloy [J]. J. Mater. Eng. Perform., 2014, 23: 3354
doi: 10.1007/s11665-014-1058-9
18 Liang X L, Liu Z Q, Wang B. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review [J]. Measurement, 2019, 132: 150
doi: 10.1016/j.measurement.2018.09.045
19 Kaynak Y, Karaca H E, Noebe R D, et al. The effect of active phase of the work material on machining performance of a NiTi shape memory alloy [J]. Metall. Mater. Trans., 2015, 46A: 2625
20 Kaynak Y, Huang B, Karaca H E, et al. Surface characteristics of machined NiTi shape memory alloy: The effects of cryogenic cooling and preheating conditions [J]. J. Mater. Eng. Perform., 2017, 26: 3597
doi: 10.1007/s11665-017-2791-7
21 Venkatalaxmi A, Padmavathi B S, Amaranath T. A general solution of unsteady Stokes equations [J]. Fluid Dyn. Res., 2004, 35: 229
doi: 10.1016/j.fluiddyn.2004.06.001
22 Bormann T, Schumacher R, Müller B, et al. Tailoring selective laser melting process parameters for NiTi implants [J]. J. Mater. Eng. Perform., 2012, 21: 2519
doi: 10.1007/s11665-012-0318-9
23 Bandyopadhyay A, Krishna B V, Xue W C, et al. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants [J]. J. Mater. Sci. Mater. Med., 2009, 20(suppl.1) : S29
24 Vamsi Krishna B, Xue W C, Bose S, et al. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures [J]. Acta Biomater., 2008, 4: 697
pmid: 18054298
25 Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing [J]. Mater. Sci. Eng., 2019, A763: 138166
26 Hassanin H, Abena A, Elsayed M A, et al. 4D printing of NiTi auxetic structure with improved ballistic performance [J]. Micromachines (Basel), 2020, 11: 745
27 Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders [J]. J. Mater. Process. Technol., 2019, 271: 152
doi: 10.1016/j.jmatprotec.2019.03.025
28 Walker J M, Haberland C, Taheri Andani M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2653
doi: 10.1177/1045389X16635848
29 Shayesteh Moghaddam N, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting [J]. Mater. Sci. Eng., 2018, A724: 220
30 Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi [J]. Acta Mater., 2018, 144: 552
doi: 10.1016/j.actamat.2017.10.072
31 Zhang B C, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder [J]. J. Mater. Sci. Technol., 2013, 29: 863
doi: 10.1016/j.jmst.2013.05.006
32 Wang X B, Kustov S, Van Humbeeck J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting [J]. Materials (Basel), 2018, 11: 1683
doi: 10.3390/ma11091683
33 Ma J, Franco B, Tapia G, et al. Spatial control of functional response in 4D-printed active metallic structures [J]. Sci. Rep., 2017, 7: 46707
doi: 10.1038/srep46707 pmid: 28429796
34 Saedi S, Turabi A S, Andani M T, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting [J]. J. Alloys Compds., 2016, 677: 204
doi: 10.1016/j.jallcom.2016.03.161
35 Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys [J]. Prog. Mater. Sci., 2005, 50: 511
doi: 10.1016/j.pmatsci.2004.10.001
36 Li S, Hassanin H, Attallah M M, et al. The development of TiNi-based negative Poisson's ratio structure using selective laser melting [J]. Acta Mater., 2016, 105: 75
doi: 10.1016/j.actamat.2015.12.017
37 Taheri Andani M, Haberland C, Walker J M, et al. Achieving biocompatible stiffness in NiTi through additive manufacturing [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2661
doi: 10.1177/1045389X16641199
38 Fan G L, Chen W, Yang S, et al. Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys [J]. Acta Mater., 2004, 52: 4351
doi: 10.1016/j.actamat.2004.06.002
39 Jiang S Y, Zhang Y Q. Microstructure evolution and deformation behavior of as-cast NiTi shape memory alloy under compression [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 90
doi: 10.1016/S1003-6326(11)61145-X
40 Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2017, 68: 224
doi: 10.1016/j.jmbbm.2017.01.047
41 Kim J I, Miyazaki S. Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy [J]. Acta Mater., 2005, 53: 4545
doi: 10.1016/j.actamat.2005.06.009
42 Kim Y W, Do D. Shape memory characteristics of highly porous Ti-rich TiNi alloys [J]. Mater. Lett., 2016, 162: 1
doi: 10.1016/j.matlet.2015.09.101
43 Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
44 Sam J, Franco B, Ma J, et al. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys [J]. Scr. Mater., 2018, 146: 164
doi: 10.1016/j.scriptamat.2017.11.013
[1] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[2] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[3] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[4] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
[5] Hongxi LIU,Zhengxue LI,Xiaowei ZHANG,Jun TAN,Yehua JIANG. Effect of Heat Treatment on High-Temperature Oxidation Resistance of High Niobium Ti-Al Intermetallic Coating Fabricated by Laser In Situ Synthesis on Titanium Alloy[J]. 金属学报, 2017, 53(2): 201-210.
[6] KE Changbo, CAO Shanshan, MA Xiao, HUANG Ping, ZHANG Xinping. PHASE FIELD SIMULATION OF AUTO-CATALYTIC GROWTH EFFECT OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2013, 49(1): 115-122.
[7] JIANG Hongjie KE Changbo CAO Shanshan MA Xiao ZHANG Xinping. PREPARATION OF NANO-SIZED SiC REINFORCED NiTi SHAPE MEMORY COMPOSITES AND THEIR MECHANICAL PROPERTIES AND DAMPING BEHAVIOR[J]. 金属学报, 2011, 47(9): 1105-1111.
[8] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF EFFECTS OF PORES ON B2-R PHASE TRANSFORMATION IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2011, 47(2): 129-139.
[9] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF THE EFFECT OF APPLIED EXTERNAL STRESS ON GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi ALLOY[J]. 金属学报, 2010, 46(8): 921-929.
[10] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2010, 46(1): 84-90.
[11] . MAGNETIC--FIELD--CONTROLLED SHAPE MEMORY EFFECT AND SUPERELASTICITY OF Ni53.2Mn22.6Ga24.2 SINGLE CRYSTAL[J]. 金属学报, 2009, 45(3): 351-355.
[12] Hai-Chang JIANG. Ni RELEASING BEHAVIOR OF POROUS TiNi SHAPE MEMORY ALLOY[J]. 金属学报, 2008, 44(2): 198-202 .
[13] . First principle study of O2 adsorption on NiTi alloy (100) surface[J]. 金属学报, 2006, 42(4): 421-425 .
[14] WEN Yuhua; ZHANG Wei; LI Ning; XIE Wenling; WANG Shanhua. Influence of Precipitated Direction of the Second Phase on Shape Memory[J]. 金属学报, 2006, 42(11): 1217-1220 .
[15] HE Zhirong(Shaanxi Institute of Technology; Hanzhong 723003); MIYAZAKI Shuichi (University of Tsukuba; Tsukuba; Japan) (Manuscript received 1995-09-11; in revised form 1995-11-22). EFFECT OF Ni CONTENT ON TRANSFORMATION BEHAVIOUR OF TiNi SHAPE MEMORY ALLOYS[J]. 金属学报, 1996, 32(4): 351-356.
No Suggested Reading articles found!