|
|
Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel |
SI Yongli1,2, XUE Jintao1,2, WANG Xingfu1, LIANG Juhua1, SHI Zimu1, HAN Fusheng1( ) |
1Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China |
|
Cite this article:
SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel. Acta Metall Sin, 2023, 59(7): 905-914.
|
Abstract High-Mn austenitic Fe-Mn-C twinning-induced plasticity (TWIP) steels are prospective candidates in many industrial fields, owing to their excellent mechanical properties. However, these steels show poor corrosion resistance, which affects their performance and prevents their applications particularly in aqueous environment. In this study, an effective way to improve the corrosion resistant property of TWIP steels was described by understanding the corrosion behavior of TWIP steel that was alloyed with Cr. A series of Fe-25Mn-xCr-0.3C (x = 0, 3, 6, 9, and 12, mass fraction, %) TWIP steels were prepared in a vacuum arc melting furnace using high purity raw materials (≥ 99.8%). Thereafter, the resulting steels were solution treated at 1200oC for 2 h under an argon atmosphere. The effect of Cr addition on the corrosion behavior of the prepared TWIP steels was investigated using various analytical techniques including XRD, potentiodynamic polarization, electrochemical impedance spectroscopy, and XPS. XRD results showed that the TWIP steels with Cr content that ranged from 3% to 12% retained their single austenite phase. Moreover, increasing the concentration of Cr in the alloys substantially increased and decreased the corrosion potential and corrosion current density, respectively. These resulted in an improvement in the corrosion resistant property of the alloys, which was verified by the increase in the charge transfer resistance found in the Nyquist plots. Meanwhile, XPS results revealed that the prepared quasi-passive oxide film was composed of FeO, Fe2O3, FeOOH, MnO, MnO2, Cr2O3, and Cr(OH)3. Furthermore, these results showed the progressive enrichment of Cr oxides and decrease of both Fe and Mn oxides in the outermost oxide as the Cr content was increased. The improved corrosion resistance of the prepared TWIP steels was caused by the protective Cr oxide film.
|
Received: 28 September 2021
|
|
Fund: National Natural Science Foundation of China(51701206);National Natural Science Foundation of China(51671187);Foundation of President of Hefei Institutes of Physical Science, Chinese Academy of Sciences(YZJJ201703) |
Corresponding Authors:
HAN Fusheng, professor, Tel: (0551)65591435, E-mail: fshan@issp.ac.cn
|
1 |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
|
2 |
De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
|
3 |
Chen L Q, Zhao Y, Qin X M. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 1
doi: 10.1007/s40195-012-0501-x
|
4 |
Idrissi H, Renard K, Schryvers D, et al. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels [J]. Scr. Mater., 2010, 63: 961
doi: 10.1016/j.scriptamat.2010.07.016
|
5 |
Steinmetz D R, Jäpel T, Wietbrock B, et al. Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments [J]. Acta Mater., 2013, 61: 494
doi: 10.1016/j.actamat.2012.09.064
|
6 |
Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J]. Scr. Mater., 2008, 58: 484
doi: 10.1016/j.scriptamat.2007.10.050
|
7 |
Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels [J]. Mater. Sci. Technol., 1998, 14: 1213
doi: 10.1179/mst.1998.14.12.1213
|
8 |
Jeong K, Jin J E, Jung Y S, et al. The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2013, 61: 3399
doi: 10.1016/j.actamat.2013.02.031
|
9 |
Lan P, Tang H Y, Zhang J Q. Hot ductility of high alloy Fe-Mn-C austenite TWIP steel [J]. Mater. Sci. Eng., 2016, A660: 127
|
10 |
Yang H K, Zhang Z J, Zhang Z F. Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels [J]. Scr. Mater., 2013, 68: 992
doi: 10.1016/j.scriptamat.2013.02.060
|
11 |
Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels [J]. Metall. Mater. Trans., 2009, 40A: 3076
|
12 |
Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, A387-389: 158
|
13 |
Chang S C, Weng W H, Chen H C, et al. The cavitation erosion of Fe-Mn-Al alloys [J]. Wear, 1995, 181-183: 511
|
14 |
Tuan Y H, Wang C S, Tsai C Y, et al. Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C in 3.5%NaCl solution [J]. Mater. Chem. Phys., 2009, 114: 595
doi: 10.1016/j.matchemphys.2008.10.009
|
15 |
Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
doi: 10.1016/j.corsci.2019.04.026
|
16 |
Moon K M, Kim D A, Kim Y H, et al. Effect of Mn content on corrosion characteristics of lean Mn TWIP steel [J]. Int. J. Mod. Phys., 2018, 32B: 1840083
|
17 |
Yuan X Y, Chen L Q. Effect of grain and grain boundary features on anti-corrosion ability of a high manganese austenitic TWIP steel [J]. Acta Metall. Sin., 2016, 52: 1345
|
|
袁晓云, 陈礼清. 晶粒及晶界特征对高锰奥氏体TWIP钢抗腐蚀能力的影响 [J]. 金属学报, 2016, 52: 1345
doi: 10.11900/0412.1961.2016.00333
|
18 |
Wang K, Wei A P, Tong X, et al. Improvement of the anti-corrosion property of twinning-induced plasticity steel by twin-induced grain boundary engineering [J]. Mater. Lett., 2018, 211: 118
doi: 10.1016/j.matlet.2017.09.102
|
19 |
Wang W, Wang D, Han F S. Improvement of corrosion resistance of twinning-induced plasticity steel by hot-dipping aluminum with subsequent thermal diffusion treatment [J]. Mater. Lett., 2019, 248: 60
doi: 10.1016/j.matlet.2019.04.001
|
20 |
Peng S, Xie S K, Lu J T, et al. Surface characteristics and corrosion resistance of spangle on hot-dip galvanized coating [J]. J. Alloys Compd., 2017, 728: 1002
doi: 10.1016/j.jallcom.2017.09.091
|
21 |
Yuan X Y, Zhao Y, Li X, et al. Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels [J]. J. Mater. Sci. Technol., 2017, 33: 1555
doi: 10.1016/j.jmst.2017.08.004
|
22 |
Wang C J, Chang Y C. NaCl-induced hot corrosion of Fe-Mn-Al-C alloys [J]. Mater. Chem. Phys., 2002, 76: 151
doi: 10.1016/S0254-0584(01)00515-6
|
23 |
Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment [J]. Appl. Surf. Sci., 2016, 379: 39
doi: 10.1016/j.apsusc.2016.04.049
|
24 |
Xu L N, Wang B, Lu M X. Corrosion behavior of 6.5%Cr steel in high temperature and high pressure CO2 environment [J]. Acta Metall. Sin., 2016, 52: 672
|
|
许立宁, 王 贝, 路民旭. 65%Cr钢在高温高压CO2环境下的腐蚀行为研究 [J]. 金属学报, 2016, 52: 672
|
25 |
Ha H Y, Jang M H, Lee T H. Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23wt%Cr-based alloys [J]. Electrochim. Acta, 2016, 191: 864
doi: 10.1016/j.electacta.2016.01.118
|
26 |
Lee S, Lee C Y, Lee Y K. Schaeffler diagram for high Mn steels [J]. J. Alloys Compd., 2015, 628: 46
doi: 10.1016/j.jallcom.2014.12.134
|
27 |
Witusiewicz V T, Sommer F, Mittemeijer E J. Reevaluation of the Fe-Mn phase diagram [J]. J. Phase Equilib. Diffus., 2004, 25: 346
doi: 10.1007/s11669-004-0152-3
|
28 |
NIST X-ray photoelectron spectroscopy database [EB/OL]. (2012-09-15).
|
29 |
Bastidas J M, Polo J L, Torres C L, et al. A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function [J]. Corros. Sci., 2001, 43: 269
doi: 10.1016/S0010-938X(00)00082-2
|
30 |
Macdonald D D. Reflections on the history of electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2006, 51: 1376
doi: 10.1016/j.electacta.2005.02.107
|
31 |
Park K, Kwon H. Effects of Mn on the localized corrosion behavior of Fe-18Cr alloys [J]. Electrochim. Acta, 2010, 55: 3421
doi: 10.1016/j.electacta.2010.01.006
|
32 |
Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corros. Sci., 2008, 50: 780
doi: 10.1016/j.corsci.2007.11.004
|
33 |
Ye W, Li Y, Wang F H. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel [J]. Electrochim. Acta, 2006, 51: 4426
doi: 10.1016/j.electacta.2005.12.034
|
34 |
Miranda D A, Jaimes S A, Bastidas J M. Assessment of carbon steel microbiologically induced corrosion by electrical impedance spectroscopy [J]. J. Solid State Electrochem., 2014, 18: 389
doi: 10.1007/s10008-013-2262-5
|
35 |
Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
doi: 10.1016/j.electacta.2014.02.107
|
36 |
Abreu C M, Cristóbal M J, Losada R, et al. Long-term behaviour of AISI 304L passive layer in chloride containing medium [J]. Electrochim. Acta, 2006, 51: 1881
doi: 10.1016/j.electacta.2005.06.040
|
37 |
Yang X J, Yang Y, Sun M H, et al. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology [J]. J. Mater. Sci. Technol., 2022, 104: 67
doi: 10.1016/j.jmst.2021.05.086
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|