|
|
High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition |
SUN Rongrong1, YAO Meiyi1( ), WANG Haoyu1, ZHANG Wenhuai1, HU Lijuan1, QIU Yunlong2, LIN Xiaodong1, XIE Yaoping1, YANG Jian3, DONG Jianxin4, CHENG Guoguang5 |
1Institute of Materials, Shanghai University, Shanghai 200072, China 2Zhongxing Energy Equipment Co., Ltd., Haimen 226126, China 3State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 4School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 5State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition. Acta Metall Sin, 2023, 59(7): 915-925.
|
Abstract An increased temperature causes the breakaway oxidation of zirconium alloys and the loss of structural integrity under the loss of coolant accident (LOCA). Thus, to enhance the inherent safety of nuclear reactors, the idea of developing accident-tolerant fuel (ATF) is proposed. One of the promising candidate materials for ATF cladding is FeCrAl alloy. The theoretical basis and guidance for FeCrAl alloy's composition optimization can be obtained by investigating the effects of alloying elements on the oxidation behavior and mechanism. Thus, the effect of Y on the oxidation behavior of Fe22Cr5Al3Mo alloy in 1000 and 1200oC high-temperature steam was investigated in this study. Two types of Fe22Cr5Al3Mo-xY (x = 0, 0.15, mass fraction, %) alloys, denoted as 0Y and 0.15Y, respectively, were fabricated and oxidized in 1000 and 1200oC high-temperature steam for 2 h, employing a simultaneous thermal analyzer. The microstructure, crystal structure, and composition of the samples before and after oxidation were analyzed using XRD, FIB, EDS, and TEM. The findings indicate that adding 0.15%Y increases the weight gain rate of FeCrAl alloy in 1000oC high-temperature steam, but decreases the weight gain rate of FeCrAl alloy in 1200oC high-temperature steam. Furthermore, adding 0.15%Y can inhibite the formation of ridge morphology on the surface of oxide film and improve the thickness uniformity and interface flatness of oxide film. The oxide films formed on the 0Y and 0.15Y alloys are both α-Al2O3 under the condition of 1000 and 1200oC high-temperature steam for 2 h. In the Al2O3 oxide film, there is hcp-(Cr, Fe)2O3 paralleled to the oxide/metal (O/M) interface. AlYO3, Y2O3, and Fe(Cr, Al)2O4 are present in the Y-rich oxides growing toward the matrix in 0.15Y alloy oxidized in 1200oC steam. The effect of Y on the oxidation behavior of FeCrAl alloy at various temperatures was discussed from the viewpoint of the influence of Y on the microstructure evolution of oxide film.
|
Received: 08 October 2021
|
|
Fund: National Natural Science Foundation of China(51871141) |
Corresponding Authors:
YAO Meiyi, professor, Tel: 17721378029, E-mail: yaomeiyi@shu.edu.cn
|
1 |
Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
|
2 |
Duan Z G, Yang H L, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water reactors [J]. Nucl. Eng. Des., 2017, 316: 131
doi: 10.1016/j.nucengdes.2017.02.031
|
3 |
Field K G, Yamamoto Y, Pint B A, et al. Accident tolerant FeCrAl fuel cladding: Current status towards commercialization [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. Cham: Springer, 2017
|
4 |
Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
|
5 |
Field K G, Gussev M N, Yamamoto Y, et al. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications [J]. J. Nucl. Mater., 2014, 454: 352
doi: 10.1016/j.jnucmat.2014.08.013
|
6 |
Dryepondt S, Put A R V, Pint B A. Effect of H2O and CO2 on the oxidation behavior and durability at high temperature of ODS-FeCrAl [J]. Oxid. Met., 2013, 79: 627
doi: 10.1007/s11085-013-9382-2
|
7 |
Terrani K A, Zinkle S J, Snead L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding [J]. J. Nucl. Mater., 2014, 448: 420
doi: 10.1016/j.jnucmat.2013.06.041
|
8 |
Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
|
9 |
Rebak R B, Gupta V K, Larsen M. Oxidation characteristics of two FeCrAl alloys in air and steam from 800oC to 1300oC [J]. JOM, 2018, 70: 1484
doi: 10.1007/s11837-018-2979-9
|
10 |
Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
|
|
褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
|
11 |
Badini C, Laurella F. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism [J]. Surf. Coat. Technol., 2001, 135: 291
doi: 10.1016/S0257-8972(00)00989-0
|
12 |
Gupta V K, Larsen M, Rebak R B. Utilizing FeCrAl oxidation resistance properties in water, air and steam for accident tolerant fuel cladding [J]. ECS Trans., 2018, 85: 3
|
13 |
Liu F, Götlind H, Svensson J E, et al. TEM investigation of the microstructure of the scale formed on a FeCrAlRE alloy at 900oC: The effect of Y-rich RE particles [J]. Oxid. Met., 2010, 74: 11
doi: 10.1007/s11085-010-9195-5
|
14 |
Falaakh D F, Kim S, Bahn C B. Microstructure of aluminium oxide formed on ferritic FeCrAl alloy after high-temperature steam oxidation [J]. Mater. High Temp., 2020, 37: 207
doi: 10.1080/09603409.2020.1742526
|
15 |
Pan D, Zhang R Q, Wang H J, et al. In steam short-time oxidation kinetics of FeCrAl alloys [J]. J. Mater. Eng. Perform., 2018, 27: 6407
doi: 10.1007/s11665-018-3665-3
|
16 |
Mennicke C, Schumann E, Ruhle M, et al. The effect of yttrium on the growth process and microstructure of α-Al2O3 on FeCrAl [J]. Oxid. Met., 1998, 49: 455
doi: 10.1023/A:1018803113093
|
17 |
Cueff R, Buscail H, Caudron E, et al. Oxidation behaviour of Kanthal A1 and Kanthal AF at 1173 K: Effect of yttrium alloying addition [J]. Appl. Surf. Sci., 2003, 207: 246
doi: 10.1016/S0169-4332(02)01506-4
|
18 |
Cueff R, Buscail H, Caudron E, et al. Oxidation of alumina formers at 1173 K: Effect of yttrium ion implantation and yttrium alloying addition [J]. Corros. Sci., 2003, 45: 1815
doi: 10.1016/S0010-938X(02)00254-8
|
19 |
Issartel C, Buscail H, Chevalier S, et al. Effect of yttrium as alloying element on a model alumina-forming alloy oxidation at 1100oC [J]. Oxid. Met., 2017, 88: 409
doi: 10.1007/s11085-017-9750-4
|
20 |
Qian Y, Sun R R, Zhang W H, et al. Effect of Nb on microstructure and corrosion resistance of Fe22Cr5Al3Mo alloy [J]. Acta Metall. Sin., 2020, 56: 321
doi: 10.11900/0412.1961.2019.00276
|
|
钱 月, 孙蓉蓉, 张文怀 等. Nb对Fe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响 [J]. 金属学报, 2020, 56: 321
|
21 |
Zhang W H, Qian Y, Sun R R, et al. Oxidation characteristics of Fe22Cr5Al3Mo-xNb alloys in high temperature steam [J]. Corros. Sci., 2021, 191: 109722
doi: 10.1016/j.corsci.2021.109722
|
22 |
Liu F, Götlind H, Svensson J E, et al. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900oC: A detailed microstructural investigation [J]. Corros. Sci., 2008, 50: 2272
doi: 10.1016/j.corsci.2008.05.019
|
23 |
Engkvist J, Canovic S, Liu F, et al. Oxidation of FeCrAl foils at 500-900oC in dry O2 and O2 with 40%H2O [J]. Mater. High Temp., 2014, 26: 199
doi: 10.3184/096034009X464311
|
24 |
Engkvist J, Canovic S, Hellström K, et al. Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900-1100oC in dry O2 and in O2 + H2O [J]. Oxid. Met., 2010, 73: 233
doi: 10.1007/s11085-009-9177-7
|
25 |
Qiao Y J, Wang P, Qi W, et al. Mechanism of Al on FeCrAl steam oxidation behavior and molecular dynamics simulations [J]. J. Alloys Compd., 2020, 828: 154310
doi: 10.1016/j.jallcom.2020.154310
|
26 |
Dai J X, Gong Z M, Xu S T, et al. In situ study on the initial oxidation behavior of zirconium alloys with near-ambient pressure XPS [J]. Acta Phys. Chim. Sin., 2022, 38: 2003026
|
|
戴久翔, 龚忠苗, 徐诗彤 等. 锆合金初始氧化行为的原位近常压XPS研究 [J]. 物理化学学报, 2022, 38: 2003026
|
27 |
Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
|
28 |
Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr in Fe-Cr-Al alloys [J]. J. Iron Steel Res., 2007, 19(7): 46
|
|
张志刚, 牛 焱, 张学军. 铁-铬-铝合金中铬的第三组元作用 [J]. 钢铁研究学报, 2007, 19(7): 46
|
29 |
Holcomb G R. Superalloys for ultra supercritical steam turbines-oxidation behavior [A]. Superalloys 2008 [C]. Champion, PA: TMS, 2008: 601
|
30 |
Tedmon C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys [J]. J. Electrochem. Soc., 1966, 113: 766
doi: 10.1149/1.2424115
|
31 |
Messaoudi K, Huntz A M, Lesage B. Diffusion and growth mechanism of Al2O3 scales on ferritic Fe-Cr-Al alloys [J]. Mater. Sci. Eng., 1998, A247: 248
|
32 |
Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
|
33 |
Nicholls J R, Bennett M J, Newton R. A life prediction model for the chemical failure of FeCrAlRE alloys: Preliminary assessment of model extension to lower temperatures [J]. Mater. High Temp., 2003, 20: 429
doi: 10.1179/mht.2003.050
|
34 |
Shi J G, Su H X, Zhang X J, et al. Research progress in the influence of rare earth elements on properties of alumina [J]. Sino-Glob. Energy, 2020, 25(5): 68
|
|
史建公, 苏海霞, 张新军 等. 稀土元素对氧化铝性能影响的研究进展 [J]. 中外能源, 2020, 25(5): 68
|
35 |
Pint B A, Jain A, Hobbs L W. The effect of ion-implanted elements on the θ to α phase transformation of Al2O3 scales grown on β-NiAl [J]. MRS Online Proc. Library, 1992, 288: 1013
doi: 10.1557/PROC-288-1013
|
36 |
Pint B A, Martin J R, Hobbs L W. 18O/SIMS characterization of the growth mechanism of doped and undoped α-Al2O3 [J]. Oxid. Met., 1993, 39: 167
doi: 10.1007/BF00665610
|
37 |
Naumenko D, Kochubey V, Niewolak L, et al. Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements [J]. J. Mater. Sci., 2008, 43: 4550
doi: 10.1007/s10853-008-2639-5
|
38 |
Lagerlof K P D, Pletka B J, Mitchell T E, et al. Deformation and diffusion in sapphire (α-Al2O3) [J]. Radiation Effects, 1983, 74: 87
doi: 10.1080/00337578308218402
|
39 |
Jedlinski J, Borchardt G. On the oxidation mechanism of alumina formers [J]. Oxid. Met., 1991, 36: 317
doi: 10.1007/BF00662968
|
40 |
Tolpygo V K, Grabke H J. Microstructural characterization and adherence of α-Al2O3 oxide scales on Fe-Cr-Al and Fe-Cr-Al-Y alloys [J]. Oxid. Met., 1994, 41: 343
doi: 10.1007/BF01113370
|
41 |
Li B, Yan Y X, Meng G E, et al. Effect of yttrium on microstructure and high temperature embrittlement of Fe-20Cr-4Al alloy [J]. J. Chin. Soc. Rare Earths, 1992, 10: 52
|
|
李 碚, 颜玉新, 孟广恩 等. 含钇相对Fe-20Cr-4Al合金的组织和高温脆化的影响 [J]. 中国稀土学报, 1992, 10: 52
|
42 |
Saenko I, Fabrichnaya O, Udovsky A. New thermodynamic assessment of the Fe-Y system [J]. J. Phase Equilib. Diffus., 2017, 38: 684
doi: 10.1007/s11669-017-0574-3
|
43 |
Wu S J, Li J, Liu S. Effect of Hf on microstructure and property of ODS-FeCrAl alloy [J]. Atom. Energy Sci. Technol., 2020, 54: 648
|
|
吴飒建, 李 静, 刘 实. Hf对ODS-FeCrAl合金微观组织及性能的影响 [J]. 原子能科学技术, 2020, 54: 648
doi: 10.7538/yzk.2019.youxian.0632
|
44 |
Dou P, Kimura A, Okuda T, et al. Polymorphic and coherency transition of Y-Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel [J]. Acta Mater., 2011, 59: 992
doi: 10.1016/j.actamat.2010.10.026
|
45 |
Li X D, Li J G, Xiu Z M, et al. Transparent Nd: YAG ceramics fabricated using nanosized γ-alumina and yttria powders [J]. J. Am. Ceram. Soc., 2009, 92: 241
doi: 10.1111/jace.2009.92.issue-1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|