Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (5): 704-714    DOI: 10.11900/0412.1961.2019.00288
Current Issue | Archive | Adv Search |
Solidification Structure Refinement in TWIP Steel by Ce Inoculation
LI Gen, LAN Peng(), ZHANG Jiaquan
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(2643KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Twinning-induced plasticity (TWIP) steel represents a novel grade of advanced high strength and ductility with significant potential for automotive industry. However, high alloying in TWIP steel leads to the inhomogeneous solute distribution and anisotropic local deformation. It is well known that the refinement of solidification structure is an effective solution to the above defects. Much attention has been paid to heterogeneous nucleation by Ce particles, acting as nucleating sites in liquid steel. The present work focuses on how Ce content and casting parameters affect the refinement of solidification structure in Fe-22Mn-0.65C TWIP steel, aiming to provide an effective technology in high alloy steel production. The reaction products of Ce inoculation were predicted by thermodynamics software FactSage 7.0 and their effectiveness of heterogeneous nucleation was estimated by lattice misfit model. The solidification structure refinement by Ce inoculation under different conditions was experimentally studied by OM, SEM, EBSD and EPMA. The results show that, with increasing Ce content the reaction products transferred from Ce2O3 to Ce2O3+a small amount of Ce2O2S, and both kinds of particles can act as heterogeneous nucleation cores theoretically. For as-cast solidification structure, the ratio of equiaxed grain area increased from 25% to 72%, average equiaxed grain size decreased from 480 μm to 130 μm and the segregation ratio of Mn decreased from 1.61 to 1.41. Meanwhile, the tendency of particle agglomeration was weakened by lowering inoculation temperature, resulting in the improvement structure refinement. In this work, the recommended inoculation parameters are concluded as (0.02%~0.04%)Ce with superheat of 20 ℃.

Key words:  Ce      TWIP steel      inoculation      solidification structure refinement      micro-segregation     
Received:  02 September 2019     
ZTFLH:  TF771.1  
Fund: National Natural Science Foundation of China(51604021);Foundamental Research Funds for the Central Universities(FRF-TP-19-017A3)
Corresponding Authors:  LAN Peng     E-mail:  lanpeng@ustb.edu.cn

Cite this article: 

LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation. Acta Metall Sin, 2020, 56(5): 704-714.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00288     OR     https://www.ams.org.cn/EN/Y2020/V56/I5/704

Fig.1  Schematics of mould (a), casting ingot and processing method (b)

T

Superheat

Sample

No.

Mass fraction / %
CeCe yield
145050H00
145050H10.01013
145050H20.03416
145050H30.06425
142020L00
142020L10.01314
142020L20.02210
142020L30.06223
Table 1  Compositions of twinning induced plasticity (TWIP) steel samples
Fig.2  Ce inoculation products in TWIP steel with superheat of 50 ℃ (L—liquid)
PhaseCrystal systema / nmc / nmα / (10-6-1)Caseδ / %
γ-Fefcc0.3620-25--
Ce2O3hex0.38910.606310(0001)Ce2O3//(100)γ-Fe6.2
(0001)Ce2O3//(100)γ-Fe21.0
(0001)Ce2O3//(100)γ-Fe19.5
Ce2O2Shex0.40010.683010(0001)Ce2O2S//(100)γ-Fe5.2
(0001)Ce2O2S//(100)γ-Fe24.7
(0001)Ce2O2S//(100)γ-Fe21.1
Table 2  Planar disregistry between Ce inoculation products and the solidification phase of TWIP steel[24,25,26,27]
Fig.3  Crystallographic relationships between Ce inoculation products and TWIP steel solidified phase
(a) (0001)Ce2O3//(100)γ-Fe (b) (0001)Ce2O2S//(100)γ-Fe
Fig.4  Effects of Ce inoculation on as-cast solidification microstructure of TWIP steel (clumnar to equiaxed transition (CET) positions are marked by white lines)
(a) H0 (b) H1 (c) H2 (d) H3 (e) L0 (f) L1 (g) L2 (h) L3
Fig.5  Effects of Ce content on the distance of CET position from surface (a) and the ratio of equiaxed grain area (b) of TWIP steel
Fig.6  EBSD images of equiaxed grain area of TWIP steel (Grain boundaries are marked by black lines)
Color online
(a) H0 (b) H1 (c) H2 (d) H3 (e) L0 (f) L1 (g) L2 (h) L3
Fig.7  Effects of Ce content on the average equiaxed grain size of TWIP steel
Fig.8  SEM images (a, c) and EDS analyses (b, d) of typical particles Ce2O3 (a, b) and Ce2O2S (c, d) in inoculated TWIP steel
Fig.9  3D size distributions of particles in inoculated TWIP steel in log-normal probability graph

Superheat

Fitting result
ABR2
501.35×1067.760.96
202.10×10634.340.99
Table 3  Fitting results between the number density of particles and Ce content
Fig.10  Effects of Ce inoculation on Mn micro-segregation of TWIP steel
Color online
(a) H0 (b) H1 (c) H2 (d) H3 (e) L0 (f) L1 (g) L2 (h) L3
Fig.11  Effects of Ce content on Mn segregation ratio of TWIP steel
Fig.12  Standard Gibbs free energy (a) and density (b) of common particles in steel along with planar disregistry between particles and austenite phase[31,32,33,34,35,36,37]
Fig.13  Effects of Ce inoculation on TWIP steel solidification texture (X and Y correspond to reference directions of sample table)
Color online
(a) H0 (b) L0 (c) H3 (d) L3
1 Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels [J]. Mater. Sci. Technol., 1998, 14: 1213
doi: 10.1179/mst.1998.14.12.1213
2 Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391
doi: 10.1016/S0749-6419(00)00015-2
3 Lan P, Zhang J Q. Tensile property and microstructure of Fe-22Mn-0.5C TWIP steel [J]. Mater. Sci. Eng., 2017, A707: 373
4 Scott C, Remy B, Collet J L, et al. Precipitation strengthening in high manganese austenitic TWIP steels [J]. Int. J. Mater. Res., 2011, 102: 538
5 Kang S, Jung J G, Kang M, et al. The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe-18Mn-0.6C-1.5Al twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2016, A652: 212
6 Yang J, Wang Y N, Ruan X M, et al. Effects of manganese content on solidification structures, thermal properties, and phase transformation characteristics in Fe-Mn-Al-C steels [J]. Metall. Mater. Trans., 2015, 46B: 1365
7 Chen L Q, Zhao Y, Qin X M. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review [J]. Acta Metall. Sin. (Engl. Lett., 2013, 26: 1
8 Wang X, Fang Y, Zhang G C, et al. Optimizing smelt and CC technology of the small billet of high manganese steel [J]. Contin. Cast., 2014, (2): 11
王 翔, 方 颖, 张国成等. 高锰钢小方坯冶炼连铸工艺优化 [J]. 连铸, 2014, (2): 11
9 Zhou Y H, Wang X, Fang Y, et al. The small billet CC process development of high manganese steel [J]. Mod. Mach., 2013, (2): 67
pmid: 14358693
周英豪, 王 翔, 方 颖等. 高锰钢小方坯连铸工艺开发 [J]. 现代机械, 2013, (2): 67
pmid: 14358693
10 Daamen M, Richter S, Hirt G. Microstructure analysis of high-manganese TWIP steels produced via strip casting [J]. Key Eng. Mater., 2013, 554-557: 553
11 Lan P, Zhang J Q. Thermophysical properties and solidification defects of Fe-22Mn-0.7C TWIP steel [J]. Steel Res. Int., 2016, 87: 250
12 Lan P, Tang H Y, Ji Y, et al. Hot ductility and fracture mechanism of Fe-22Mn-0.7C TWIP steel [J]. Chin. J. Eng., 2016, 38: 795
兰 鹏, 唐海燕, 纪 元等. Fe-22Mn-0.7CTWIP钢的热塑性与断裂机制 [J]. 工程科学学报, 2016, 38: 795
13 Li S Q, Liu J H, Liu H B, et al. Microsegregation in low carbon Fe-Mn-Si-Al TWIP steel [J]. Chin. J. Eng., 2016, 38: 937
李世琪, 刘建华, 刘洪波等. 低碳Fe-Mn-Si-Al系TWIP钢的显微偏析行为 [J]. 工程科学学报, 2016, 38: 937
14 Ohno M, Matsuura K. Refinement of as-cast austenite microstructure in S45C steel by titanium addition [J]. ISIJ Int., 2008, 48: 1373
15 Li M, Li J M, Zheng Q, et al. A new grain refiner for ferritic steels [J]. Metall. Mater. Trans., 2017, 48B: 2902
16 Liu Z L. Review of grain refinement of cast metals through inoculation: Theories and developments [J]. Metall. Mater. Trans., 2017, 48A: 4755
17 Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
18 Liu S F, Huang S Y, Xu P. Influence of cerium addition on as-cast microstructure refinement of AZ91 magnesium alloy [J]. Acta Metall. Sin., 2006, 42: 443
刘生发, 黄尚宇, 徐 萍. Ce对AZ91镁合金铸态组织细化的影响 [J]. 金属学报, 2006, 42: 443
19 Heo Y U, Lee S Y, Cho J W, et al. Effects of Ce and P addition on as-cast structure and formation mechanism of cerium compounds in Ce-added TWIP steels [J]. Mater. Charact., 2016, 120: 234
20 Guo M X, Suito H. Influence of dissolved cerium and primary inclusion particles of Ce2O3 and CeS on solidification behavior of Fe-0.20 mass%C-0.02 mass%P alloy [J]. ISIJ Int., 1999, 39: 722
21 Nuri Y, Ohashi T, Hiromoto T, et al. Solidification microstructure of ingots and continuously cast slabs treated with rare earth metal [J]. Trans. Iron Steel Inst. Jpn., 1982, 22: 399
doi: 10.2355/isijinternational1966.22.399
22 Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel [J]. Acta Metall. Sin., 2018, 54: 1253
doi: 10.11900/0412.1961.2018.00079
黄 宇, 成国光, 谢 有. 稀土Ce对钎具钢中夹杂物的改质机理研究 [J]. 金属学报, 2018, 54: 1253
doi: 10.11900/0412.1961.2018.00079
23 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
doi: 10.1007/BF02642799
24 Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite [J]. Metall. Mater. Trans., 2005, 36A: 3281
25 Benz R. Ce2O2Sb and Ce2O2Bi crystal structure [J]. Acta Crystallogr. Sect., 1971, 27B: 853
26 Bärnighausen H, Schiller G. The crystal structure of A-Ce2O3 [J]. J. Less Common Met., 1985, 110: 385
27 de Andrés G, Caballero F G, Capdevila C, et al. Modelling of kinetics and dilatometric behavior of non-isothermal pearlite-to-austenite transformation in an eutectoid steel [J]. Scr. Mater., 1998, 39: 791
28 Li T, Shimasaki S I, Taniguchi S, et al. Stereological analysis of nonspherical particles in solid metal [J]. Metall. Mater. Trans., 2013, 44B: 750
29 Guo M X, Suito H. Dispersion of primary inclusions of Ce2O3 and CeS in Fe-0.20 mass%C-0.02 mass%P alloy [J]. ISIJ Int., 1999, 39: 678
30 Gao X Z. Fundamental research on the application of nanoparticles added from outside in non-quenched and tempered steel 35MnVS [D]. Beijing: University of Science and Technology Beijing, 2017
高向宙. 外加纳米粒子技术在非调质钢35MnVS中应用的基础研究 [D]. 北京: 北京科技大学, 2017
31 Li G, Lu M G, Lan P, et al. Research progress of rare earth Ce on improvement of microstructure and homogeneity of as-cast steel [J]. J. Iron Steel Res., 2018, 30: 79
李 根, 陆民刚, 兰 鹏等. 稀土Ce改善钢铸态组织与均质性的研究进展 [J]. 钢铁研究学报, 2018, 30: 79
32 Suito H, Ohta H, Morioka S. Refinement of solidification microstructure and austenite grain by fine inclusion particles [J]. ISIJ Int., 2006, 46: 840
33 Sawai T, Wakoh M, Ueshima Y, et al. Analysis of oxide dispersion during solidification in Ti, Zr-deoxidized steels [J]. ISIJ Int., 1992, 32: 169
34 Pak J J, Jeong Y S, Hong I K, et al. Thermodynamics of TiN formation in Fe-Cr melts [J]. ISIJ Int., 2005, 45: 1106
35 Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultraclean steels [J]. ISIJ Int., 1996, 36: 528
36 Ohta H, Suito H. Precipitation and dispersion control of MnS by deoxidation products of ZrO2, Al2O3, MgO and MnO-SiO2 particles in Fe-10mass%Ni alloy [J]. ISIJ Int., 2006, 46: 480
37 Pan N, Song B, Zhai Q J, et al. Effect of lattice disregistry on the heterogeneous nucleation catalysis of liquid steel [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 179
潘 宁, 宋 波, 翟启杰等. 钢液非均质形核触媒效用的点阵错配度理论 [J]. 北京科技大学学报, 2010, 32: 179
38 Hou Y Y, Cheng G G. Formation mechanism and nucleation effect of Ti2O3-TiN complex nucleus at solidification front of 18Cr ferritic stainless steel [J]. Metall. Mater. Trans., 2019, 50B: 1351
39 Li Y, Yang G, Jiang Z H, et al. Effects of Ce on the microstructure and properties of 27Cr-3.8Mo-2Ni super-ferritic stainless steels [J]. Ironmaking Steelmaking, 2020, 47: 67
40 Song S H, Sun S F. Effect of rare‐earth cerium on impurity tin‐induced hot ductility deterioration of SA508‐III reactor pressure vessel steel [J]. Steel Res. Int., 2016, 87: 1435
41 Ohashi T, Hiromoto T, Fujii H, et al. Effect of oxides on nucleation behaviour in supercooled iron [J]. Tetsu Hagané, 1976, 62: 614
大橋徹郎, 広本 健, 藤井博務等. 鉄の不均質核生成におよぼす酸化物の影響 [J]. 鐵と鋼, 1976, 62: 614
42 StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
43 Easton M A, StJohn D H. Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate [J]. Mater. Sci. Eng., 2008, A486: 8
44 Du Q, Li Y J. An extension of the Kampmann-Wagner numerical model towards as-cast grain size prediction of multicomponent aluminum alloys [J]. Acta Mater., 2014, 71: 380
45 Wang X F, Chen W Q. Influence of cerium on hot workability of 00Cr25Ni7Mo4N super duplex stainless steel [J]. J. Rare Earths, 2010, 28: 295
46 Jo M C, Lee H, Zargaran A, et al. Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel [J]. Mater. Sci. Eng., 2018, A737: 69
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[5] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[6] DONG Han,LIAN Xintong,HU Chundong,LU Hengchang,PENG Wei,ZHAO Hongshan,XU Dexiang. High Performance Steels: the Scenario of Theoryand Technology[J]. 金属学报, 2020, 56(4): 558-582.
[7] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[8] YU Feng,CHEN Xingpin,XU Haifeng,DONG Han,WENG Yuqing,CAO Wenquan. Current Status of Metallurgical Quality and Fatigue Performance of Rolling Bearing Steel and Development Direction of High-End Bearing Steel[J]. 金属学报, 2020, 56(4): 513-522.
[9] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[10] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[11] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[12] JIN Xuejun,GONG Yu,HAN Xianhong,DU Hao,DING Wei,ZHU Bin,ZHANG Yisheng,FENG Yi,MA Mingtu,LIANG Bin,ZHAO Yan,LI Yong,ZHENG Jinghua,SHI Zhusheng. A Review of Current State and Prospect of the Manufacturing and Application of Advanced Hot Stamping Automobile Steels[J]. 金属学报, 2020, 56(4): 411-428.
[13] LIU Zhengdong,CHEN Zhengzong,HE Xikou,BAO Hansheng. Systematical Innovation of Heat Resistant Materials Used for 630~700 ℃ Advanced Ultra-Supercritical (A-USC)Fossil Fired Boilers[J]. 金属学报, 2020, 56(4): 539-548.
[14] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[15] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
No Suggested Reading articles found!