Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 503-512    DOI: 10.11900/0412.1961.2021.00521
Overview Current Issue | Archive | Adv Search |
Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings
ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie()
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings. Acta Metall Sin, 2022, 58(4): 503-512.

Download:  HTML  PDF(4008KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermal barrier coatings (TBCs) are essential material and technology for modern high-performance aeroengines. They can promote the service temperature of hot components (such as turbine blades) while protecting them from oxidation and corrosion. A key component of TBCs is the metallic bond coat, which directly governs the service performance and lifetime of TBCs. However, due to its low oxidation resistance, severe bond coat-substrate interdiffusion, and low high-temperature strength, the MCrAlY bond coat cannot meet the temperature requirement of next-generation ultrahigh temperature TBCs because its service temperature is lower than 1100oC. This study proposes a high-entropy alloy bond coat design strategy to address critical issues, aiming to break the temperature limitation of conventional bond coats. Herein, the oxidation and thermal corrosion resistance of Y/Hf-NiCoCrAlFe high-entropy alloy as well as the oxidation resistance of high-entropy alloy powder and bond coat are introduced and elaborated. Finally, the development trend of high-performance high-entropy alloy bond coat is summarized.

Key words:  thermal barrier coating      metallic bond coat      high-entropy alloy      oxidation resistance      thermal corrosion resistance     
Received:  01 December 2021     
ZTFLH:  TG141  
Fund: National Natural Science Foundation of China(52102072)
About author:  LU Jie, Tel: (021)54742561, E-mail: lu-jie@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00521     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/503

Fig.1  TEM analyses of Y/Hf-NiCoCrAlFe high-entropy alloy (HEA)[31]
(a) high angle annular dark field (HAADF) STEM image of interdendritic region and corresponding EDX analyses
(b) HAADF STEM image of dendritic region and corresponding EDX analyses (c, d) selected area electron diffraction (SAED) patterns of A2 and B2 phases, respectively
Fig.2  Surface morphologies of HEA1 (a, d, g), HEA2 (b, e, h, i), and HEA3 (c, f, j, k) (DR—dendritic, ID—interdendritic)[38]
(a-c) optical images (d-f) low magnification BSE images (g-k) locally amplifying BSE images
Fig.3  Cross-sectional morphologies of three types of HEAs after oxidation at 1100oC[38]
(a-f) BSE images from HEA1, HEA2, and HEA3 after 250 h oxidation, respectively (g-l) BSE images from HEA1, HEA2, and HEA3 after 1000 h oxidation, respectively
Fig.4  Cross-sectional and fractural morphologies of Y/Hf-NiCoCrAlFe HEA after 100 and 500 h oxidation at 1200oC[42]
(a, b, e-g) BSE images (a, b, f, g) with the corresponding elemental maps (e) (c, d, h, i) BSE images after etching(j, k) SEM images after scale fracture
Fig.5  Cross-sectional BSE micrographs and EDS mappings of S and O in HEA3 (a) and the NiCoCrAl alloy (b) after 160 h hot corrosion[52]
Fig.6  Cross-sectional morphologies and elemental maps of NiCoCrAlFe HEA powder after oxidation[55]
(a, b) low magnification and locally amplifying BSE images after 48 h oxidation at 900oC (c, d) low magnification and locally amplifying BSE images after 48 h oxidation at 1000oC (e, f) low magnification and locally amplifying BSE images after 48 h oxidation at 1100oC
Fig.7  Cross-sectional morphologies of conventional NiCoCrAlY bond coat (a-c) and NiCoCrAlFeY HEA bond coat (d-f) before (a, d) and after (b, c, e, f) cyclic oxidation at 1150oC
1 Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines [J]. MRS Bull., 2012, 37: 891
2 Guo H B, Gong S K, Xu H B. Research progress on new high/ ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
3 Zhang X F, Zhou K S, Song J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition [J]. J. Inorg. Mater., 2015, 30: 287
张小锋, 周克崧, 宋进兵 等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制 [J]. 无机材料学报, 2015, 30: 287
4 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
5 Yang L, Zhou Y C, Zhu W. Research progress in the real-time acoustic emission characterization of failure in thermal barrier coatings [J]. Mater. China, 2020, 39: 878
杨 丽, 周益春, 朱 旺. 热障涂层失效的声发射实时表征技术研究进展 [J]. 中国材料进展, 2020, 39: 878
6 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
7 Shillington E A G, Clarke D R. Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat [J]. Acta Mater., 1999, 47: 1297
8 Hutchinson J W, He M Y, Evans A G. The influence of imperfections on the nucleation and propagation of buckling driven delaminations [J]. J. Mech. Phys. Solids, 2000, 48: 709
9 Chen Y, Zhao X, Bai M, et al. A mechanistic understanding on rumpling of a NiCoCrAlY bond coat for thermal barrier coating applications [J]. Acta Mater., 2017, 128: 31
10 Shen Z Y, He L M, Xu Z H, et al. Morphological evolution and failure of LZC/YSZ DCL TBCs by electron beam-physical vapor deposition [J]. Materialia, 2018, 4: 340
11 Shen Z Y, He L M, Xu Z H, et al. LZC/YSZ DCL TBCs by EB-PVD: Microstructure, low thermal conductivity and high thermal cycling life [J]. J. Eur. Ceram. Soc., 2019, 39: 1443
12 Shen Z Y, He L M, Xu Z H, et al. LZC/YSZ double layer coatings: EB-PVD, microstructure and thermal cycling life [J]. Surf. Coat. Technol., 2019, 367: 86
13 Lance M J, Unocic K A, Haynes J A, et al. APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings [J]. Surf. Coat. Technol., 2015, 284: 9
14 Meng G H, Liu H, Liu M J, et al. Highly oxidation resistant MCrAlY bond coats prepared by heat treatment under low oxygen content [J]. Surf. Coat. Technol., 2019, 368: 192
15 Meng G H, Liu H, Xu P Y, et al. Superior oxidation resistant MCrAlY bond coats prepared by controlled atmosphere heat treatment [J]. Corros. Sci., 2020, 170: 108653
16 Evans A G, Clarke D R, Levi C G. The influence of oxides on the performance of advanced gas turbines [J]. J. Eur. Ceram. Soc., 2008, 28: 1405
17 Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 108-109: 73
18 Pomeroy M J. Coatings for gas turbine materials and long term stability issues [J]. Mater. Des., 2005, 26: 223
19 Chen Y, Zhao X, Dang Y, et al. Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application [J]. Acta Mater., 2015, 94: 1
20 Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
21 Lu J, Chen Y, Zhao C S, et al. Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium [J]. Corros. Sci., 2019, 153: 178
22 Yang L X, Zou Z H, Kou Z D, et al. High temperature stress and its influence on surface rumpling in NiCoCrAlY bond coat [J]. Acta Mater., 2017, 139: 122
23 Zheng L, Guo H B, Guo L, et al. New generation thermal barrier coatings for ultrahigh temperature applications [J]. J. Aeronaut. Mater., 2012, 32(6): 14
郑 蕾, 郭洪波, 郭 磊 等. 新一代超高温热障涂层研究 [J]. 航空材料学报, 2012, 32(6): 14
24 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
25 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
26 Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications [M]. Switzerland: Springer, 2016: 1
27 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
28 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
29 Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
30 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
31 Lu J, Chen Y, Zhang H, et al. Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance [J]. Corros. Sci., 2020, 166: 108426
32 Liu Z Y, Gao W, Dahm K L, et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater., 1998, 46: 1691
33 Kaplin C, Brochu M. The effect of grain size on the oxidation of NiCoCrAlY [J]. Appl. Surf. Sci., 2014, 301: 258
34 Ma K K, Schoenung J M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO [J]. Surf. Coat. Technol., 2011, 205: 5178
35 Richer P, Zúñiga A, Yandouzi M, et al. CoNiCrAlY microstructural changes induced during cold gas dynamic spraying [J]. Surf. Coat. Technol., 2008, 203: 364
36 Hejrani E, Sebold D, Nowak W J, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 191
37 Peng H, Guo H B, He J, et al. Microscale lamellar NiCoCrAlY coating with improved oxidation resistance [J]. Surf. Coat. Technol., 2012, 207: 110
38 Lu J, Chen Y, Zhang H, et al. Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy [J]. Corros. Sci., 2020, 170: 108691
39 Busso E P, Evans H E, Qian Z Q, et al. Effects of breakaway oxidation on local stresses in thermal barrier coatings [J]. Acta Mater., 2010, 58: 1242
40 Li Y, Li C J, Yang G J, et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying [J]. Surf. Coat. Technol., 2010, 205: 2225
41 Tolpygo V K, Clarke D R, Murphy K S. Oxidation-induced failure of EB-PVD thermal barrier coatings [J]. Surf. Coat. Technol., 2001, 146-147: 124
42 Lu J, Zhang H, Li L, et al. Y-Hf co-doped Al1.1CoCr0.8FeNi high-entropy alloy with excellent oxidation resistance and nanostructure stability at 1200oC [J]. Scr. Mater., 2021, 203: 114105
43 Lu J, Chen Y, Zhang H, et al. Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200oC [J]. Corros. Sci., 2020, 174: 108803
44 Evans H E, Taylor M P. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems [J]. Oxid. Met., 2001, 55: 17
45 Wang G, Gleeson B, Douglass D L. A diffusional analysis of the oxidation of binary multiphase alloys [J]. Oxid. Met., 1991, 35: 333
46 Pint B A. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys [J]. J. Am. Ceram. Soc., 2003, 86: 686
47 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
48 Naumenko D, Pint B A, Quadakkers W J. Current thoughts on reactive element effects in alumina-forming systems: In memory of john stringer [J]. Oxid. Met., 2016, 86: 1
49 Yang H B, Wang Y S, Wang X, et al. Research progress of hot corrosion and protection technology of gas turbine under marine environment [J]. Surf. Technol., 2020, 49: 163
杨宏波, 王源升, 王 轩 等. 燃气轮机在海洋环境下的热腐蚀与防护技术研究进展 [J]. 表面技术, 2020, 49: 163
50 Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
51 Bose S. High Temperature Coatings [M]. Boston: Butterworth-Heinemann, 2007: 155
52 Li L, Lu J, Liu X Z, et al. Al x CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25%NaCl at 900oC [J]. Corros. Sci., 2021, 187: 109479
53 Leyens C, Wright I G, Pint B A. Effect of experimental procedures on the cyclic, hot-corrosion behavior of NiCoCrAlY-type bondcoat alloys [J]. Oxid. Met., 2000, 54: 255
54 Zhang P M, Li X H, Moverare J, et al. The iron effect on hot corrosion behaviour of MCrAlX coating in the presence of NaCl at 900oC [J]. J. Alloys Compd., 2000, 815: 152381
55 Lu J, Li L, Zhang H, et al. Oxidation behavior of gas-atomized AlCoCrFeNi high-entropy alloy powder at 900-1100oC [J]. Corros. Sci., 2021, 181: 109257
56 Mullis A M, Farrell L, Cochrane R F, et al. Estimation of cooling rates during close-coupled gas atomization using secondary dendrite arm spacing measurement [J]. Metall. Mater. Trans., 2013, 44B: 992
57 Liang J T, Cheng K C, Chen S H. Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders [J]. J. Alloys Compd., 2019, 803: 484
58 Golightly F A, Stott F H, Wood G C. The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy [J]. Oxid. Met., 1976, 10: 163
59 Issartel C, Buscail H, Chevalier S, et al. Effect of yttrium as alloying element on a model alumina-forming alloy oxidation at 1100oC [J]. Oxid. Met., 2017, 88: 409
60 Luo L R, Zhang H, Chen Y, et al. Effects of the β phase size and shape on the oxidation behavior of NiCoCrAlY coating [J]. Corros. Sci., 2018, 145: 262
61 Yang G J, Xiang X D, Xing L K, et al. Isothermal oxidation behavior of NiCoCrAlTaY coating deposited by high velocity air-fuel spraying [J]. J. Therm. Spray Technol., 2012, 21: 391
62 Sadeghimeresht E, Markocsan N, Nylén P. Microstructural and electrochemical characterization of Ni-based bi-layer coatings produced by the HVAF process [J]. Surf. Coat. Technol., 2016, 304: 606
63 Sadeghimeresht E, Markocsan N, Nylén P. Microstructural characteristics and corrosion behavior of HVAF- and HVOF-sprayed Fe-based coatings [J]. Surf. Coat. Technol., 2017, 318: 365
64 Zhang P M, Sadeghimeresht E, Chen S L, et al. Effects of surface finish on the initial oxidation of HVAF-sprayed NiCoCrAlY coatings [J]. Surf. Coat. Technol., 2019, 364: 43
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[3] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[4] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[5] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. 金属学报, 2022, 58(3): 257-271.
[8] AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy[J]. 金属学报, 2022, 58(11): 1441-1458.
[9] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[10] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
[11] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[12] GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. 金属学报, 2021, 57(9): 1184-1198.
[13] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[14] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[15] DING Jun, WANG Zhangjie. Local Chemical Order in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 413-424.
No Suggested Reading articles found!