Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects
WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan(), JIANG Suihe, LIU Xiongjun, WANG Hui(), LU Zhaoping
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects. Acta Metall Sin, 2021, 57(4): 403-412.
Nanocrystalline alloys (NAs) with nano-sized fine grains and high density of grain boundaries exhibit promising properties, such as high strength and hardness. However, industrial applications of NAs at high or even room temperature have been limited, owing to their thermal instability, which originates from the high proportion of grain boundaries in NAs. Recently, nanocrystalline high-entropy alloys (NC-HEAs) have emerged and have been rapidly developed, which are expected to alleviate thermal instability. In this study, design strategies for the thermal stability of NC-HEAs and related progress are investigated and summarized. In addition, the underlying mechanism for the high thermal stability of NC-HEAs is discussed by utilizing high-entropy effects, based on entropy engineering. These high-entropy design strategies may provide a new methodology for dramatically increasing the thermal stability of NAs.
Fund: National Natural Science Foundation of China(51921001);the Project of State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing(2019Z-01)
About author: WANG Hui, associate professor, Tel: (010)62332246, E-mail: wanghui@ustb.edu.cn WU Yuan, professor, Tel: (010)62332246, E-mail: wuyuan@ustb.edu.cn
Fig.1 Microstructural schematic of the progression from single crystal metal to nanocrystalline (NC) metal to NC-HEA (HEA—high-entropy alloy)[19]
Fig.2 The designed nanostructured AlCoCuNi medium-entropy alloy (MEA) with stable dual phase by ultilizing entropy engineering (a-c)[30]
Fig.3 The designed crystalline/amorphous dual-phase FeCoNiCrMn alloy with ultra-high hardness by ultilizing entropy engineering (d—grain size)[31]
Fig.4 Room-temperature hardness, Young's modulus, and APT reconstructions of FeCoNiCrMn alloys with different grain sizes after isothermal heat treatments at 450oC for various time[61]
1
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
2
Gleiter H. Nanostructured materials: Basic concepts and microstructure [J]. Acta Mater., 2000, 48: 1
3
Suryanarayana C, Koch C C. Nanocrystalline materials—Current research and future directions [J]. Hyperfine Interact., 2000, 130: 5
4
Belova I V, Murch G E. Diffusion in nanocrystalline materials [J]. J. Phys. Chem. Solids, 2003, 64: 873
5
Palumbo G, Thorpe S J, Aust K T. On the contribution of triple junctions to the structure and properties of nanocrystalline materials [J]. Scr. Metall. Mater., 1990, 24: 1347
6
Cantwell P R, Tang M, Dillon S J, et al. Grain boundary complexions [J]. Acta Mater., 2014, 62: 1
7
Ames M, Markmann J, Karos R, et al. Unraveling the nature of room temperature grain growth in nanocrystalline materials [J]. Acta Mater., 2008, 56: 4255
8
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
9
Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
10
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
11
Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys [J]. Mater. Sci. Eng., 2015, A642: 142
12
Zhou Y J, Zhang Y, Wang F J, et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1-xsolid-solution alloys [J]. Appl. Phys. Lett., 2008, 92: 241917
13
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
14
Lu Z P, Wang H, Chen M W, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop [J]. Intermetallics, 2015, 66: 67
15
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
16
Laktionova M A, Tabchnikova E D, Tang Z, et al. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2-300 K [J]. J. Low Temp. Phys., 2013, 39: 630
17
Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions [J]. Mater. Sci. Eng., 2012, A533: 107
18
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
19
Haché M J R, Cheng C J, Zou Y. Nanostructured high-entropy materials [J]. J. Mater. Res., 2020, 35: 1051
20
Koch C C, Scattergood R O, Saber M, et al. High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies [J]. J. Mater. Res., 2013, 28: 1785
21
Gottstein G, Shvindlerman L S. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications [M]. 2nd Ed., Boca Raton, FL: CRC Press, 2010: 1
22
Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3: 261
23
Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation [J]. J. Cryst. Growth, 2004, 264: 385
24
Hondros E D, Seah M P. The theory of grain boundary segregation in terms of surface adsorption analogues [J]. Metall. Trans., 1977, 8A: 1363
25
Chen Y Z, Herz A, Li Y J, et al. Nanocrystalline Fe-C alloys produced by ball milling of iron and graphite [J]. Acta Mater., 2013, 61: 3172
26
Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50: 413
27
Lei Z F, Liu X J, Wang H, et al. Development of advanced materials via entropy engineering [J]. Scr. Mater., 2019, 165: 164
28
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
29
He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
30
Deng H W, Xie Z M, Wang M M, et al. A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and boundary engineering [J]. Mater. Sci. Eng., 2020, A774: 138925
31
Xiao L L, Zheng Z Q, Guo S W, et al. Ultra-strong nanostructured CrMnFeCoNi high entropy alloys [J]. Mater. Des., 2020, 194: 108895
32
Cahn J W. The impurity-drag effect in grain boundary motion [J]. Acta Metall., 1962, 10: 789
33
Lücke K, Detert K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities [J]. Acta Metall., 1957, 5: 628
34
Michels A, Krill C E, Ehrhardt H, et al. Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials [J]. Acta Mater., 1999, 47: 2143
35
Rabkin E. On the grain size dependent solute and particle drag [J]. Scr. Mater., 2000, 42: 1199
36
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Oxford: Pergamon, 2004: 557
37
Rupp J L M, Infortuna A, Gauckler L J. Microstrain and self-limited grain growth in nanocrystalline ceria ceramics [J]. Acta Mater., 2006, 54: 1721
38
Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu [J]. Mater. Des., 2013, 50: 22
39
Zuo B, Sritharan T. Ordering and grain growth in nanocrystalline Fe75Si25 alloy [J]. Acta Mater., 2005, 53: 1233
40
Bansal C, Gao Z Q, Fultz B. Grain growth and chemical ordering in (Fe, Mn)3Si [J]. Nanostruct. Mater., 1995, 5: 327
41
Cottrell A H, Jaswon M A. Distribution of solute atoms round a slow dislocation [J]. Proc. R. Soc. London, 1949, 199A: 104
42
Hillert M, Sundman B. A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys [J]. Acta Metall., 1976, 24: 731
43
Verhasselt J C, Gottstein G, Molodov D A, et al. Shape of moving grain boundaries in Al-bicrystals [J]. Acta Mater., 1999, 47: 887
44
Heo T W, Bhattacharyya S, Chen L Q. A phase field study of strain energy effects on solute-grain boundary interactions [J]. Acta Mater., 2011, 59: 7800
45
Xiao Y, Zou Y, Ma H, et al. Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness [J]. Scr. Mater., 2019, 168: 51
46
Gottstein G, Shvindlerman L S. Theory of grain boundary motion in the presence of mobile particles [J]. Acta Metall. Mater., 1993, 41: 3267
47
Chen Z, Liu F, Yang X Q, et al. A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition [J]. J. Alloys Compd., 2014, 608: 338
48
Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions [J]. Acta Mater., 2018, 147: 213
49
Wang J J, Wu S S, Fu S, et al. Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation [J]. Scr. Mater., 2020, 187: 335
50
Molinari A, Libardi S, Leoni M, et al. Role of lattice strain on thermal stability of a nanocrystalline FeMo alloy [J]. Acta Mater., 2010, 58: 963
51
Lu L, Li S X, Lu K. An abnormal strain rate effect on tensile behavior in nanocrystalline copper [J]. Scr. Mater., 2001, 45: 1163
52
Gao Z Q, Fultz B. Thermal stability of Fe3Si-based nanocrystals [J]. Hyperfine Interact., 1994, 94: 2213
53
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
54
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
55
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
56
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
57
Zhou N X, Hu T, Huang J J, et al. Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions [J]. Scr. Mater., 2016, 124: 160
58
Zhou N X, Hu T, Luo J. Grain boundary complexions in multicomponent alloys: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 268
59
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
60
Varalakshmi S, Kamaraj M, Murty B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J]. J. Alloys Compd., 2008, 460: 253
61
Maier-Kiener V, Schuh B, George E P, et al. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys [J]. Mater. Des., 2017, 115: 479