Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 513-528    DOI: 10.11900/0412.1961.2021.00549
Overview Current Issue | Archive | Adv Search |
Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings
FENG Kai1,2,3, GUO Yanbing4, FENG Yulei1,2,3, YAO Chengwu1,2,3, ZHU Yanyan1,2,3, ZHANG Qunli5, LI Zhuguo1,2,3()
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240, China
3.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
4.School of Materials Science, Shanghai DianJi University, Shanghai 201306, China
5.Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China
Cite this article: 

FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings. Acta Metall Sin, 2022, 58(4): 513-528.

Download:  HTML  PDF(6058KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Laser cladding is a powerful surface strengthening technology that combines with high precision forming and low substrate damage to endow components with high surface performance. Fe-based coatings have been widely used in the surface engineering of many mechanical components. As the demand for higher performance and longer service life for components increases, the design and fabrication of new laser cladded coatings are expected to improve. This paper reviews recent research results of our team on laser cladding of novel Fe-based coatings, such as nano-bainite Fe-based coating, ultra-fine eutectic Fe-based coating, particle reinforced martensite coating, and high-hardness amorphous Fe-based coating. The study results are presented from the perspectives of the design, microstructure, and mechanical properties of these novel coating materials.

Key words:  laser cladding      surface technology      Fe-based coating      microstructure controlling      high strength and high toughness     
Received:  11 December 2021     
ZTFLH:  TG178  
Fund: National Key Research and Developent Program of China(2018YFB0407300)
About author:  LI Zhuguo, professor, Tel: (021)34203024, E-mail: lizg@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00549     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/513

Fig.1  Nano bainitic microstructures in the coatings obtained at different isothermal temperatures of 200oC for 24 h (a), 250oC for 16 h (b), and 300oC for 8 h (c)[46], and retained austenite generated mechanism (d)[48]
Fig.2  The pole figures and inverse pole figures (IPFs) of nano bainitic ferrite in the coatings obtained at different isothermal temperatures[49]
Fig.3  TEM images of microstructure and selected area electron diffraction (SAED) patterns of nano bainite obtained at different isothermal temperatures[49]
(a) 300oC (b) 250oC (c) 200oC
Fig.4  Kinetic curves of nano bainitic transformation under different isothermal temperatures
Fig.5  The mechanical properties of the laser cladded nano bainitic coatings under different isothermal temperatures (HAZ—heat affected zone)
(a) Vickers hardness (b) tensile strength
Fig.6  Microstructures of the coatings[60]
(a) macrograph of the single-pass coating (b) macrograph of the multi-pass coating
(c) bottom of the coating (d) center of the coating
(e) magnification of Fig.6d (f) phase maps of the coating
Fig.7  TEM images of the different position of coating[60]
(a) bright-field image and corresponding SAED pattern of matrix in the coating (b, c) bright-field image of eutectic in the coating (b) and corresponding SAED pattern of γ-Fe (c) (d) magnification of Fig.7a (e) magnification of Fig.7b (f) SAED pattern of M3(C, B)
Fig.8  Residual stress distributions with depth of the single-pass coating (a) and the multi-pass coating (b)[60]
Fig.9  The hardness distributions of the coatings (Unit:HV; inset is the SEM image of the nano indentation tested area)[60]
Fig.10  The nanohardnesses and corresponding SEM images of the nanoindentation morphologies[60]
Fig.11  The wear resistance of the coating and substrate[60]
(a) friction coefficient (b) average wear rate and friction coefficient
CompoundHardness / HVWear rate
10-5 mm3·N-1·m-1
Present8500.92
M49532.1
HS-309252.3
M29283.1
HS-238533.9
WR68644.4
WR6 + VC9495.1
AISI 4207158.5
H1369712.9
AISI 43172920.6
Table 1  Hardness and wear resistance of the traditional tool steel coating and present coating[68]
Fig.12  Microstructures of coating and XRD spectrum[73]
(a) macrostructure of the coating
(b) OM image of the coating
(c) high magnification of the area in Fig.12b (d, e) high magnification of the area in Fig.12c (d) and XRD spectrum (e)
Fig.13  Microstructures of cladding layer[73]
(a) TEM image
(b) TEM image in the interdendritic region (Inset shows the SAED pattern of blocky carbide)
(c) magnification of the region plotted by the rectangular mark in Fig.13b (Inset shows the SAED pattern of retained austenite)
(d) local magnification of Fig.13a
Fig.14  Hardness distribution of the coatings[74]
Fig.15  Stress-strain curve (a) and fracture surface morphology (b) of coating (Point A, yield strength; point B, rupture)[74]
Fig.16  XRD spectra of laser cladded coating with different cladding rates[76]
Fig.17  Cross-sectional OM images of the coating with different laser scanning rates (a), and cross-sectional images after the Image Segmentation Software processing (b)[76]
Fig.18  XRD analyses of the coating at different distances from the interface of coating/substrate[77]
(a) SEM image of coatings
(b) XRD spectra at different depths
(c) fusion line between coating and substrate
Distance to fusion line / mmPhases compositionAmorphous percentage / %Grain size / nm
0.570Fe2B, FeCo76.8~19.9
0.503Amorphous, NbC96.229.9-32.0
0.327Amorphous, NbC95.729.5-31.0
0.015FeCo11.9~6.4
SubstrateFe0~22.6
Table 2  Amorphous fraction and grain size in different regions of the coating[76]
Fig.19  Microhardness curve along the cross-section of the coating (a) and SEM image of the microhardness indentation (b)[80]
Fig.20  Friction coefficient-time (μ-t) curves of the layer III, layer I and II, and substrate[76]
Region

Average friction

force / N

Wear mass

loss / g

Friction coefficient
RangeAverageRelative wear
Layer III206.470.0030.0974-0.11510.104860.28
Layer I and II206.560.0110.2285-0.25360.244120.66
Substrate204.210.0550.3424-0.38570.368161
Table 3  Statistic results on friction force, wear mass loss, and friction coefficient during wear process[76]
1 Gao Y X, Du L Z, Huang C B, et al. Wear behavior of sintered hexagonal boron nitride under atmosphere and water vapor ambiences [J]. Appl. Surf. Sci., 2011, 257: 10195
2 Zhu S Y, Bi Q L, Yang J, et al. Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites [J]. Tribol. Int., 2011, 44: 1182
3 Chao M J, Wang W L, Liang E J, et al. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding [J]. Surf. Coat. Technol., 2008, 202: 1918
4 Ma M M, Wang Z M, Zeng X Y. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition [J]. Mater. Sci. Eng., 2017, A685: 265
5 Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying [J]. Opt. Laser Technol., 2021, 134: 106619
6 Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review [J]. Opt. Laser Technol., 2021, 138: 106915
7 Singh S, Goyal D K, Kumar P, et al. Laser cladding technique for erosive wear applications: A review [J]. Mater. Res. Express, 2020, 7: 012007
8 Gao W Y, Chang C, Li G, et al. Study on the laser cladding of FeCrNi coating [J]. Optik, 2019, 178: 950
9 Zhang Y, Han T F, Xiao M, et al. Effect of Nb content on microstructure and properties of laser cladding FeNiCoCrTi0.5Nb x high-entropy alloy coating [J]. Optik, 2019, 198: 163316
10 Zhu H M, Hu J P, Li B C, et al. Research progress of laser cladding stainless steel coating on Fe-based substrate [J]. Surf. Technol., 2020, 49(3): 74
朱红梅, 胡际鹏, 李柏春 等. 铁基材料表面激光熔覆不锈钢涂层的研究进展 [J]. 表面技术, 2020, 49(3): 74
11 Tong W H, Zhang X Y, Li W X, et al. Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer [J]. Acta Metall. Sin., 2020, 56: 1265
童文辉, 张新元, 李为轩 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响 [J]. 金属学报, 2020, 56: 1265
12 Xu Z F, Jiao J K, Zhang Z, et al. Research on laser repair process of Ni-based superalloy [J]. Mater. Rep., 2019, 33: 3196
徐子法, 焦俊科, 张 正 等. 镍基高温合金激光修复工艺研究 [J]. 材料导报, 2019, 33: 3196
13 Wang X H, Zhang M, Liu X M, et al. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding [J]. Surf. Coat. Technol., 2008, 202: 3600
14 Katakam S, Santhanakrishnan S, Vora H, et al. Stress-induced selective nano-crystallization in laser-processed amorphous Fe-Si-B alloys [J]. Philos. Mag. Lett., 2012, 92: 617
15 Han B, Li M Y, Wang Y. Microstructure and wear resistance of laser clad Fe-Cr3C2 composite coating on 35CrMo steel [J]. J. Mater. Eng. Perform., 2013, 22: 3749
16 Telasang G, Majumdar J D, Wasekar N, et al. Microstructure and mechanical properties of laser clad and post-cladding tempered AISI H13 tool steel [J]. Metall. Mater. Trans., 2015, 46A: 2309
17 Zhang H, Zou Y, Zou Z D, et al. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder [J]. Opt. Laser Technol., 2015, 65: 119
18 Dai S, Zuo D W, Fang C, et al. Characteration of laser cladded Fe-Mn-Cr alloy coatings modified by plasma nitriding [J]. Mater. Trans., 2016, 57: 539
19 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
20 Zhang Q M. An investigation on the applying fundamentals of powder feeding laser cladding [D]. Beijing: Changchun Institute of Optics and Fine Mechnics and Physics, Chinese Academy Sciences, 2000
张庆茂. 送粉激光熔覆应用基础理论的研究 [D]. 北京: 中国科学院长春光学精密机械与物理研究所, 2000
21 Liu Z X. Modeling and numerical simulation on laser remelting and cladding [D]. Xi'an: Northwestern Polytechnical University, 2003
刘振侠. 激光熔凝和激光熔覆的数学模型及数值分析 [D]. 西安: 西北工业大学, 2003
22 Toyserkani E, Khajepour A, Corbin S. Laser Cladding [M]. Boca Raton: CRC Press, 2005: 1
23 Hu H Q. Principle of Metal Solidification [M]. 2nd Ed., Beijing: China Machine Press, 2000: 1
胡汉启. 金属凝固原理[M]. 第2版. 北京: 机械工业出版社, 2000: 1
24 Wu X L, Chen G N. Nonequilibrium microstructures and their evolution in a Fe-Cr-W-Ni-C laser clad coating [J]. Mater. Sci. Eng., 1999, A270: 183
25 Li Y M, Yang H O, Lin X, et al. The influences of processing parameters on forming characterizations during laser rapid forming [J]. Mater. Sci. Eng., 2003, A360: 18
26 Wu X L, Hong Y S. Fe-based thick amorphous-alloy coating by laser cladding [J]. Surf. Coat. Technol., 2001, 141: 141
27 Shan B, Chen J L, Chen S Y, et al. Laser cladding of Fe-based corrosion and wear-resistant alloy: Genetic design, microstructure, and properties [J], Surf. Coat. Technol., 2022, 433: 128117
28 Zhang W P, Liu S. Development of the effect of high energy laser on the rapid solidification structure and properties of the material surface [J]. Foundry, 2005, 54: 28
张维平, 刘 硕. 高能激光束对材料表层快速凝固组织及性能影响的研究进展 [J]. 铸造, 2005, 54: 28
29 Kagawa A, Ohta Y, Nakayama K. Mechanism of crack generation in carbide surface layer of laser-clad iron alloys [J]. Mater. Trans., 2002, 43: 1261
30 Yu J M, Lu X, Chao M J, et al. Investigation on microstructure and cracking susceptibility of laser-clad Fe-based alloy coatings [J]. Appl. Laser, 2006, 26: 175
余菊美, 卢 洵, 晁明举 等. 铁基合金激光熔覆层组织分布及开裂敏感性研究 [J]. 应用激光, 2006, 26: 175
31 Chen Z K, Liu M, Zeng D C, et al. Research on formation causes and elimination methods of the laser cladding cracks [J]. Laser J., 2009, 30(1): 55
陈志坤, 刘 敏, 曾德长 等. 激光熔覆裂纹的产生原因及消除方法探究 [J]. 激光杂志, 2009, 30(1): 55
32 Wang H P. Discussion on crack in laser-clad case [J]. Heat Treat., 2008, 23(6): 24
王慧萍. 关于激光熔覆层开裂问题的探讨 [J]. 热处理, 2008, 23(6): 24
33 Li M X, Zhang S H, Li H S, et al. Effect of nano-CeO2 on cobalt-based alloy laser coatings [J]. J. Mater. Process. Technol., 2008, 202: 107
34 Yang X Y, Peng X, Chen J, et al. Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy [J]. Appl. Surf. Sci., 2007, 253: 4420
35 Li S, Zeng X Y, Hu Q W. The mechanism of strengthening and toughening of crack-free Fe-based alloy with high hardness for laser cladding [J]. Trans. China Weld. Inst., 2008, 29(7): 101
李 胜, 曾晓雁, 胡乾午. 高硬度激光熔覆专用Fe基合金强韧化机理 [J]. 焊接学报, 2008, 29(7): 101
36 Li S, Hu Q W, Zeng X Y, et al. Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer [J]. Appl. Surf. Sci., 2005, 240: 63
37 Yoozbashi M N, Yazdani S, Wang T S. Design of a new nanostructured, high-Si bainitic steel with lower cost production [J]. Mater. Des., 2011, 32: 3248
38 Garcia-Mateo C, Caballero F G, Sourmail T, et al. Composition design of nanocrystalline bainitic steels by diffusionless solid reaction [J]. Met. Mater. Int., 2014, 20: 405
39 Rementeria R, Jimenez J A, Allain S Y P, et al. Quantitative assessment of carbon allocation anomalies in low temperature bainite [J]. Acta Mater., 2017, 133: 333
40 Caballero F G, Allain S, Cornide J, et al. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application [J]. Mater. Des., 2013, 49: 667
41 Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon [J]. Mater. Sci. Eng., 2012, A549: 185
42 García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 495
43 Zhou W H, Wang X L, Venkatsurya P K C, et al. Structure-mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering [J]. Mater. Sci. Eng., 2014, A607: 569
44 Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
45 Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite [J]. ISIJ Int., 2003, 43: 1821
46 Guo Y B, Li Z G, Yao C W, et al. Microstructure evolution of Fe-based nanostructured bainite coating by laser cladding [J]. Mater. Des., 2014, 63: 100
47 Guo Y B, Feng K, Lu F G, et al. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings [J]. Appl. Surf. Sci., 2015, 357: 309
48 Guo Y B, Li Z G, Hosseini S R E, et al. Effect of chemical segregation on nanobainitic transformation in laser cladded coatings [J]. Mater. Des., 2015, 88: 781
49 Guo Y B, Yao C W, Feng K, et al. Effect of isothermal temperature on growth behavior of nanostructured bainite in laser cladded coatings [J]. Materials, 2017, 10: 800
50 Gu S T, Chai G Z, Wu H P, et al. Characterization of local mechanical properties of laser-cladding H13-TiC composite coatings using nanoindentation and finite element analysis [J]. Mater. Des., 2012, 39: 72
51 Guo Y B, Li Z G, Li L Q, et al. The effects of micro-segregation on isothermal transformed nano bainitic microstructure and mechanical properties in laser cladded coatings [J]. Materials, 2020, 13: 3017
52 Jiang Y L, Fang J X, Ma G Z, et al. Microstructure and properties of an as-deposited and post treated high strength carbide-free bainite steel fabricated via laser powder deposition [J]. Mater. Sci. Eng., 2021, A824: 141791
53 Xiao B, Xing J D, Feng J, et al. A comparative study of Cr7C3, Fe3C and Fe2B in cast iron both from ab initio calculations and experiments [J]. J. Phys., 2009, 42D: 115415
54 Zheng B C, Huang Z F, Xing J D, et al. Three-body abrasive wear behavior of cementite with different chromium concentrations [J]. Tribol. Lett., 2016, 61: 13
55 Zheng B C, Huang Z F, Xing J D, et al. Effect of chromium content on cementite-pearlite interaction of white cast iron during three-body abrasive wear [J]. Ind. Lubr. Tribol., 2017, 69: 863
56 Meschel S V, Kleppa O J. Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry [J]. J. Alloys Compd., 1997, 257: 227
57 Shein I R, Medvedeva N I, Ivanovskii A L. Electronic and structural properties of cementite-type M3 X (M = Fe, Co, Ni; X = C or B) by first principles calculations [J]. Physica, 2006, 371B: 126
58 Röttger A, Weber S, Theisen W. Supersolidus liquid-phase sintering of ultrahigh-boron high-carbon steels for wear-protection applications [J]. Mater. Sci. Eng., 2012, A532: 511
59 Lin Y C, Chen H M, Chen Y C. Microstructures and wear properties of various clad layers of the Fe-W-C-B-Cr system [J]. Surf. Coat. Technol., 2013, 236: 410
60 Feng Y L, Pang X T, Feng K, et al. Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C, B) [J]. J. Mater. Res. Technol., 2021, 15: 5597
61 Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels [J]. Metall. Trans., 1989, 20A: 2133
62 Dong R J. Metallurgical Principle [M]. Beijing: Machinery Industry Press, 1980: 1
董若景. 冶金原理 [M]. 北京: 机械工业出版社, 1980: 1
63 Werniewicz K, Kühn U, Mattern N, et al. New Fe-Cr-Mo-Ga-C composites with high compressive strength and large plasticity [J]. Acta Mater., 2007, 55: 3513
64 Berns H, Saltykova A, Röttger A, et al. Wear protection by Fe-B-C hard phases [J]. Steel Res. Int., 2011, 82: 786
65 Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C) [J]. Acta Mater., 2011, 59: 5845
66 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
67 You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
68 Tuominen J, Näkki J, Pajukoski H, et al. Microstructural and abrasion wear characteristics of laser-clad tool steel coatings [J]. Surf. Eng., 2016, 32: 923
69 Luo W, Selvadurai U, Tillmann W. Effect of residual stress on the wear resistance of thermal spray coatings [J]. J. Therm. Spray Technol., 2016, 25: 321
70 Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel [J]. Tribol. Int., 2017, 115: 108
71 Goto H, Amamoto Y. Effect of varying load on wear resistance of carbon steel under unlubricated conditions [J]. Wear, 2003, 254: 1256
72 Liu Z L, Li Z L, Liu W D. Interface Electronic Structure and Interface Performance [M]. Beijing: Science Press, 2002: 1
刘志林, 李志林, 刘伟东. 界面电子结构与界面性能 [M]. 北京: 科学出版社, 2002: 1
73 Yao C W. Study on alloy design, microstructure characteristics, and strength and toughness of Fe-based laser cladding layer [D]. Shanghai: Shanghai Jiao Tong University, 2010
姚成武. 铁基激光熔覆涂层的合金系设计、组织特征及强韧性研究 [D]. 上海: 上海交通大学, 2010
74 Yao C W, Huang J, Zhang P L, et al. Toughening of Fe-based laser-clad alloy coating [J]. Appl. Surf. Sci., 2011, 257: 2184
75 Cheng J B, Liang X B, Chen Y X, et al. High-temperature erosion resistance of FeBSiNb amorphous coatings deposited by arc spraying for boiler applications [J]. J. Therm. Spray Technol., 2013, 22: 820
76 Zhu Y Y. Study on FeCo-based amorphous coating using diode laser cladding processing [D]. Shanghai: Shanghai Jiao Tong University, 2013
朱彦彦. 半导体激光熔覆铁钴基非晶层的研究 [D]. 上海: 上海交通大学, 2013
77 Zhu Y Y, Li Z G, Li R F, et al. High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating: Layered microstructure and properties [J]. Surf. Coat. Technol., 2013, 235: 699
78 Verdon C, Karimi A, Martin J L. A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures [J]. Mater. Sci. Eng., 1998, A246: 11
79 Cullity B D. Elements of X-ray Diffraction [M]. 2nd Ed., Phillippines: Addison-Wesley Publishing Company Inc, 1978: 1
80 Zhu Y Y, Li Z G, Li R F, et al. Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process [J]. Appl. Surf. Sci., 2013, 280: 50
81 Shen B L, Inoue A, Chang C T. Superhigh strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability [J]. Appl. Phys. Lett., 2004, 85: 4911
[1] ZHAO Wanxin, ZHOU Zheng, HUANG Jie, YANG Yange, DU Kaiping, HE Dingyong. Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding[J]. 金属学报, 2021, 57(10): 1291-1298.
[2] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
[3] ZHANG Yu, LOU Liyan, XU Qinglong, LI Yan, LI Changjiu, LI Chengxin. Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding[J]. 金属学报, 2020, 56(11): 1530-1540.
[4] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[5] Yinghua LIN, Ying YUAN, Liang WANG, Yong HU, Qunli ZHANG, Jianhua YAO. Effect of Electric-Magnetic Compound Field on the Microstructure and Crack in Solidified Ni60 Alloy[J]. 金属学报, 2018, 54(10): 1442-1450.
[6] Wenhui TONG,Zilong ZHAO,Xinyuan ZHANG,Jie WANG,Xuming GUO,Xinhua DUAN,Yu LIU. Microstructure and Properties of TiC/Co-Based Alloyby Laser Cladding on the Surface of NodularGraphite Cast Iron[J]. 金属学报, 2017, 53(4): 472-478.
[7] Bin LIU,Kai GONG,Yanxin QIAO,Shiyun DONG. EVALUATION OF INFLUENCE OF PRESET CRACK BURIAL DEPTH ON STRESS OF LASER CLADDING COATING WITH METAL MAGNETIC MEMORY[J]. 金属学报, 2016, 52(2): 241-248.
[8] Binshi XU,Jinxiang FANG,Shiyun DONG,Xiaoting LIU,Shixing YAN,Chaoqun SONG,Dan XIA. HEAT-AFFECTED ZONE MICROSTRUCTURE EVOLU- TION AND ITS EFFECTS ON MECHANICAL PROPERTIES FOR LASER CLADDING FV520B STAINLESS STEEL[J]. 金属学报, 2016, 52(1): 1-9.
[9] LIN Yinghua, LEI Yongping, FU Hanguang, LIN Jian. LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS[J]. 金属学报, 2014, 50(12): 1513-1519.
[10] LIN Yinghua, LEI Yongping, FU Hanguang, LIN Jian. EFFECT OF Ni ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiB2/TiB TITANIUM MATRIX COMPOSITE COATINGS[J]. 金属学报, 2014, 50(12): 1520-1528.
[11] WANG Chuanqi, LIU Hongxi, ZHOU Rong, JIANG Yehua, ZHANG Xiaowei. CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi-TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION[J]. 金属学报, 2013, 49(2): 221-228.
[12] XU Hengdong ZHAO Haiyan S¨orn Ocylok Igor Kelbassa. STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL[J]. 金属学报, 2012, 48(2): 142-147.
[13] ZHANG Xiaowei LIU Hongxi JIANG Yehua WANG Chuanqi. LASER IN SITU SYNTHESIZED TiN/Ti3Al COMPOSITE COATINGS[J]. 金属学报, 2011, 47(8): 1086-1093.
[14] ZHANG Hui PAN Ye HE Yizhu. LASER CLADDING FeCoNiCrAl2Si HIGH–ENTROPY ALLOY COATING[J]. 金属学报, 2011, 47(8): 1075-1079.
[15] GU Yu DONG Changsheng MA Mingxing ZHONG Minlin LIU Wenjin. RESEARCH ON THE SELECTIVELY DISSOLUTION CHARACTERISTICS OF Cu–Mn ALLOYS AND FABRICATION OF NANOPOROUS COATINGS BY LASER CLADDING HYBRID ELECTROCHEMICALLY DEALLOYING[J]. 金属学报, 2011, 47(3): 349-353.
No Suggested Reading articles found!