Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (9): 1184-1198    DOI: 10.11900/0412.1961.2021.00121
Overview Current Issue | Archive | Adv Search |
CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine
GUO Lei1,2,3(), GAO Yuan1, YE Fuxing1,2,3, ZHANG Xinmu1
1.School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
2.Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China
3.Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
Cite this article: 

GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine. Acta Metall Sin, 2021, 57(9): 1184-1198.

Download:  HTML  PDF(4942KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermal barrier coating (TBC) is a core aero-engine turbine blade technology, which can significantly increase an engine's operating temperature, thrust, and working efficiency. Moreover, high-engine operating temperatures make aero-engine turbine blades and their TBCs suffer from severe corrosion of environmental deposits (the main components are CaO, MgO, Al2O3, and SiO2, together referred to as CMAS), causing premature failure. CMAS corrosion has become a key issue that limits the service temperature and lifetimes of TBCs, and its protection has been a research hotspot. In this paper, first, the scholars' understanding of CMAS corrosion to TBCs and the characteristics of CMAS were reviewed. Then, CMAS corrosion mechanisms for TBCs were briefly described. The protection methods of TBCs from CMAS corrosion were elaborated from the aspects of TBC's surface protection layer design, coating component modification, new CMAS-resistant coating materials development, and coating microstructure design. Finally, the application of TBCs in ultrahigh temperature environments and the development direction of corrosion protection were forecasted.

Key words:  gas turbine engine      thermal barrier coating      CMAS corrosion      failure mechanism      protection method     
Received:  24 March 2021     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(51971156)
About author:  GUO Lei, associate professor, Tel: 18322186422, E-mail: glei028@tju.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00121     OR     https://www.ams.org.cn/EN/Y2021/V57/I9/1184

Fig.1  Cross-section microstructures of yttria partially stabilized zirconia (YSZ) coatings by different preparation methods[34](a) air plasma spraying (APS) (b) electron beam physical vapor deposition (EB-PVD)
Fig.2  Degradation of thermal barrier coatings (TBCs) by CMAS (CaO, MgO, Al2O3, and SiO2) at high temperatures(a) thermochemical degradation[43](b) thermomechanical degradation[13]
Fig.3  Cross-sectional images of YSZ coatings with Pt films after heat treatment at 1250oC for 4 h with CMAS deposits[54]
Fig.4  Cross-sectional microstructures of Ti2AlC (a) and EDS results of Ca (b), Mg (c), Al (d), Ti (e), and O (f) elements[72]
Fig.5  Cross-sectional microstructures with low (a, c) and high (b, d) magnifications of LaPO4/YSZ coatings after CMAS attack at 1250oC for 2 h (a, b) and 10 h (c, d)[95]
Fig.6  Surface and fracture cross-sectional morphologies of laser-glazed coatings before (a, c, e) and after (b, d, f) parameter optimization
Fig.7  Micrographs of laser-glazed coatings after CMAS attack at 1250oC for 0.5 h (a, b) and 4 h (c, d) [43]
1 Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28: 18
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28: 18
2 Hua J J, Zhang L P, Liu Z W, et al. Progress of research on the failure mechanism of thermal barrier coatings [J]. J. Inorg. Mater., 2012, 27: 680
3 Costa G, Harder B J, Wiesner V L, et al. Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents [J]. J. Am. Ceram. Soc., 2018, 102: 2948
4 Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
5 Zhang X F, Zhou K S, Zhang J F, et al. Structure evolution of 7YSZ thermal barrier coating during thermal shock testing [J]. J. Inorg. Mater., 2015, 30: 1261
张小锋, 周克崧, 张吉阜等. 热震中7YSZ热障涂层结构演变 [J]. 无机材料学报, 2015, 30: 1261
6 Xiang J Y, Chen S H, Huang J H, et al. Thermal shock resistance of La2(Zr0.7Ce0.3)2O7 thermal barrier coating prepared by atmospheric plasma spraying [J]. Acta Metall. Sin., 2012, 48: 965
项建英, 陈树海, 黄继华等. 等离子喷涂La2(Zr0.7Ce0.3)2O7热障涂层的抗热震性能 [J]. 金属学报, 2012, 48: 965
7 Zhang Y J, Sun X F, Jin T, et al. Microstructure of air plasma sprayed YSZ nanostructured thermal barrier coating [J]. Acta Metall. Sin., 2003, 39: 395
张玉娟, 孙晓峰, 金 涛等. 大气等离子喷涂的YSZ纳米热障涂层的微观结构 [J]. 金属学报, 2003, 39: 395
8 Li M H, Sun X F, Zhang Z Y, et al. Oxidation and phase structure of the bond coat in EB-PVD thermal barrier coatings during thermal cycling [J]. Acta Metall. Sin., 2002, 38: 79
李美姮, 孙晓峰, 张重远等. EB-PVD热障涂层热循环过程中粘结层的氧化和相结构 [J]. 金属学报, 2002, 38: 79
9 Keshavarz M, Idris M H, Ahmad N. Mechanical properties of stabilized zirconia nanocrystalline EB-PVD coating evaluated by micro and nano indentation [J]. J. Adv. Ceram., 2013, 2: 333
10 Song W J, Lavallée Y, Hess K U, et al. Volcanic ash melting under conditions relevant to ash turbine interactions [J]. Nat. Commun., 2016, 7: 10795
11 Smialek J L, Archer F A, Garlick R G. The chemistry of saudi arabian sand: A deposition problem on helicopter turbine airfoils [A]. Advances in Synthesis and Processes [C]. Covina: SAMPE, 1992: 20
12 Borom M P, Johnson C A, Peluso L A. Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 1996, 86-87: 116
13 Mercer C, Faulhaber S, Evans A G, et al. A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration [J]. Acta Mater., 2005, 53: 1029
14 Smialek J L, Archer F A, Garlick R G. Turbine airfoil degradation in the persian gulf war [J]. JOM, 1994, 46(12): 39
15 Shifler D A, Choi S R. CMAS effects on ship gas-turbine components/materials [A]. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition [C]. Oslo: American Society Mechanical Engineers, 2018: 1
16 Toriz F C, Thakker A B, Gupta S K. Thermal barrier coatings for jet engines [A]. ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition [C]. Amsterdam: ASME, 1988: 1
17 Kim J, Dunn M G, Baran A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines [J]. J. Eng. Gas. Turb. Power, 1993, 115: 641
18 Stott F H, De Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
19 Aygun A, Vasiliev A L, Padture N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits [J]. Acta Mater., 2007, 55: 6734
20 Gledhill A. Thermal barrier coatings chemically and mechanically resistant to high temperature attack by molten ashes [D]. Columbus, Ohio: The Ohio State University, 2011
21 Levi C G, Hutchinson J W, Vidal-Sétif M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits [J]. MRS Bull., 2012, 37: 932
22 Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
23 Clarke D R, Oechsner M, Padture N P. Thermal barrier coatings for more efficient gas-turbine engines [J]. MRS Bull., 2012, 37: 891
24 Naraparaju R, Chavez J J G, Schulz U, et al. Interaction and infiltration behavior of Eyjafjallajökull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65wt% Y2O3 coating at high temperature [J]. Acta Mater., 2017, 136: 164
25 Zhang B P, Song W J, Guo H B. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor [J]. J. Eur. Ceram. Soc., 2018, 38: 3564
26 Dean J, Taltavull C, Clyne T W. Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines [J]. Acta Mater., 2016, 109: 8
27 Poerschke D L, Barth T L, Levi C G. Equilibrium relationships between thermal barrier oxides and silicate melts [J]. Acta Mater., 2016, 120: 302
28 Wiesner V L, Bansal N P. Mechanical and thermal properties of calcium-magnesium aluminosilicate (CMAS) glass [J]. J. Eur. Ceram. Soc., 2015, 35: 2907
29 Jackson R W, Zaleski E M, Poerschke D L, et al. Interaction of molten silicates with thermal barrier coatings under temperature gradients [J]. Acta Mater., 2015, 89: 396
30 Song W J, Lavallee Y, Wadsworth F B, et al. Wetting and spreading of molten volcanic ash in jet engines [J]. J. Phys. Chem. Lett., 2017, 8: 1878
31 Li B T, Chen Z, Zheng H Z, et al. Wetting mechanism of CMAS melt on YSZ surface at high temperature: First-principles calculation [J]. Appl. Surf. Sci., 2019, 483: 811
32 Guo L, Xin H, Li Y Y, et al. Self-crystallization characteristics of calcium-magnesium-alumina-silicate (CMAS) glass under simulated conditions for thermal barrier coating applications [J]. J. Eur. Ceram. Soc., 2020, 40: 5683
33 Xu S M, Zhang X F, Liu M, et al. Oxidation resistance of Al-modified APS 7YSZ thermal barrier coating [J]. Mater. Rev., 2019, 33: 283
许世鸣, 张小锋, 刘 敏等. APS制备7YSZ热障涂层镀铝改性的抗氧化性 [J]. 材料导报, 2019, 33: 283
34 Wang X, Zhen Z, Huang G H, et al. Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat [J]. J. Alloys Compd., 2021, 873: 159720
35 Sampath S, Schulz U, Jarligo M O, et al. Processing science of advanced thermal-barrier systems [J]. MRS Bull., 2012, 37: 903
36 Hua Y F, Pan W, Li Z X, et al. Research progress of hot corrosion-resistance for thermal barrier coatings [J]. Rare Metal Mater. Eng., 2013, 42: 1976
华云峰, 潘 伟, 李争显等. 热障涂层抗腐蚀研究进展 [J]. 稀有金属材料与工程, 2013, 42: 1976
37 Zhang X F, Zhou K S, Song J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition [J]. J. Inorg. Mater., 2015, 30: 287
张小锋, 周克崧, 宋进兵等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制 [J]. 无机材料学报, 2015, 30: 287
38 Li D X, Jiang P, Gao R H, et al. Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion [J]. J. Adv. Ceram., 2021, 10: 551
39 Krämer S, Faulhaber S, Chambers M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration [J]. Mater. Sci. Eng., 2008, A490: 26
40 Wu J, Guo H B, Gao Y Z, et al. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits [J]. J. Eur. Ceram. Soc., 2011, 31: 1881
41 Steinke T, Sebold D, Mack D E, et al. A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions [J]. Surf. Coat. Technol., 2010, 205: 2287
42 Nicholls J R, Deakin M J, Rickerby D S. A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings [J]. Wear, 1999, 233-235: 352
43 Yan Z, Guo L, Li Z H, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings [J]. Corros. Sci., 2019, 157: 450
44 Li L, Hitchman N, Knapp J. Failure of thermal barrier coatings subjected to CMAS attack [J]. J. Therm. Spray Technol., 2010, 19: 148
45 Krämer S, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS) deposits [J]. J. Am. Ceram. Soc., 2006, 89: 3167
46 Peng H, Wang L, Guo L, et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits [J]. Prog. Nat. Sci: Mater. Int., 2012, 22: 461
47 Wu J, Guo H B, Abbas M, et al. Evaluation of plasma sprayed YSZ thermal barrier coatings with the CMAS deposits infiltration using impedance spectroscopy [J]. Prog. Nat. Sci: Mater. Int., 2012, 22: 40
48 Yang S J, Peng H, Guo H B. Failure and protection of thermal barrier coating under CMAS attack [J]. J. Aeron. Mater., 2018, 38: 43
杨姗洁, 彭 徽, 郭洪波. 热障涂层在CMAS环境下的失效与防护 [J]. 航空材料学报, 2018, 38: 43
49 Rai A K, Bhattacharya R S, Wolfe D E, et al. CMAS-resistant thermal barrier coatings (TBC) [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 662
50 He Q, Wang R J, Zou H, et al. Protective effects of 8YSZ TBCs with different microstructures against CMAS deposits [J]. China Surf. Eng., 2016, 29: 86
何 箐, 汪瑞军, 邹 晗等. 不同结构8YSZ热障涂层对CMAS沉积物的防护作用 [J]. 中国表面工程, 2016, 29: 86
51 Hasz W C, Johnson C A, Borom M P. Protection of thermal barrier coating by a sacrificial surface coating [P]. USA Pat, 5660885, 1997
52 Hasz W C, Borom M P, Johnson C A. Protection of thermal barrier coating with an impermeable barrier coating [P]. USA Pat, 5871820, 1999
53 Hasz W C, Borom M P, Johnson C A. Protected thermal barrier coating composite with multiple coatings [P]. USA Pat, 6261643, 2001
54 Wang L, Guo L, Li Z M, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack [J]. Ceram. Int., 2015, 41: 11662
55 Liu H, Cai J, Zhu J H. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers [J]. Ceram. Int., 2018, 44: 452
56 Zhang X F, Zhou K S, Wei X, et al. In situ synthesis of α-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier [J]. Ceram. Int., 2014, 40: 12703
57 Zhang X F, Zhou K S, Xu W, et al. In situ synthesis of α-alumina layer on thermal barrier coating for protection against CMAS (CaO-MgO-Al2O3-SiO2) corrosion [J]. Surf. Coat. Technol., 2015, 261: 54
58 Zhang X F, Zhou K S, Xu W, et al. Reaction mechanism and thermal insulation property of Al-deposited 7YSZ thermal barrier coating [J]. J. Mater. Sci. Technol., 2015, 31: 1006
59 Zhang X F, Zhou K S, Liu M, et al. Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings [J]. Ceram. Int., 2016, 42: 13969
60 Zhang X F, Zhou K S, Liu M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating [J]. Ceram. Int., 2016, 42: 19349
61 Zhang X F, Zhou K S, Liu, M, et al. Thermal shock analysis of surface Al-modified 7YSZ nano-thermal barrier coating [J]. J. Inorg. Mater., 2017, 32: 973
张小锋, 周克崧, 刘 敏等. 镀铝表面改性7YSZ纳米热障涂层热震性能分析 [J]. 无机材料学报, 2017, 32: 973
62 Guo Y Q, Wei L L, He Q, et al. PS-PVD alumina overlayer on thermal barrier coatings against CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 864
63 Ye F X, Yang W Q, Yan S, et al. The wettability and corrosion behaviors of CMAS on M-YTaO4 at 1350oC [J]. J. Therm. Spray Technol., 2021, 30: 873
64 Guo L, Li G, Gan Z L. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J]. J. Adv. Ceram., 2021, 10: 472
65 Wei X D, Hou G L, Zhao D, et al. Recent research progress on oxide doped YSZ thermal barrier coatings [J]. Surf. Technol., 2020, 49: 92
魏晓东, 侯国梁, 赵 荻等. 氧化物掺杂YSZ热障涂层的最新研究进展 [J]. 表面技术, 2020, 49: 92
66 Shi Y, Li B W, Zhao M, et al. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent [J]. J. Am. Ceram. Soc., 2018, 101: 3968
67 Hsiang H I, Yung S W, Wang C C. Crystallization, densification and dielectric properties of CaO-MgO-Al2O3-SiO2 glass with ZrO2 as nucleating agent [J]. Mater. Res. Bull., 2014, 60: 730
68 Zhang X F, Wei H Y, Ouyang S L, et al. Effect of composite nucleation agents on microstructures and mechanical properties of CaO-MgO-Al2O3-SiO2 glass ceramics [J]. Mater. Rev., 2015, 29: 112
张雪峰, 魏海燕, 欧阳顺利等. 复合形核剂对CaO-MgO-Al2O3-SiO2系玻璃陶瓷微观结构与力学性质的影响 [J]. 材料导报, 2015, 29: 112
69 Webster R I, Opila E J. The effect of TiO2 additions on CaO-MgO-Al2O3-SiO2 (CMAS) crystallization behavior from the melt [J]. J. Am. Ceram. Soc., 2019, 102: 3354
70 Fang H J, Wang W Z, Huang J B, et al. Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS) [J]. Ceram. Int., 2019, 45: 19710
71 Guo L, Yan Z, Wang X H, et al. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J]. Ceram. Int., 2019, 45: 7627
72 Yan Z, Guo L, Zhang Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 167: 108532
73 Gong W B, Li R W, Li Y P, et al. Stabilization and corrosion resistance under high-temperature of nanostructured CeO2/ZrO2-Y2O3 thermal barrier coating [J]. Acta Metall. Sin., 2013, 49: 593
宫文彪, 李任伟, 李于朋等. CeO2/ZrO2-Y2O3纳米结构热障涂层的高温稳定性及耐腐蚀性能 [J]. 金属学报, 2013, 49: 593
74 Guo S Q, Feng Y B, He Y, et al. Materials and fabrication technique of thermal barrier coatings for future aeroengines [J]. Surf. Technol., 2012, 41: 119
郭双全, 冯云彪, 何 勇等. 未来航空发动机热障涂层材料及制备技术 [J]. 表面技术, 2012, 41: 119
75 Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2000, 83: 2023
76 Ma W, Mack D, Malzbender J, et al. Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2008, 28: 3071
77 Ma W, Mack D E, Vaßen R, et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2008, 91: 2630
78 Guo L, Li M Z, Yang C X, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance property of BaLn2Ti3O10 (Ln = La, Nd) for thermal barrier coating applications [J]. Ceram. Int., 2017, 43: 10521
79 Yu J X, Wang C M, Guo L, et al. Hot corrosion behavior of BaLa2Ti3O10 exposed to calcium-magnesium-alumina-silicate at elevated temperatures [J]. Ceram. Int., 2018, 44: 10220
80 Wan C L, Qu Z X, He Y, et al. Ultralow thermal conductivity in highly anion-defective aluminates [J]. Phys. Rev. Lett., 2008, 101: 085901
81 Wei L L, Guo L, Li M Z, et al. Calcium-magnesium-alumina-silicate (CMAS) resistant Ba2REAlO5 (RE = Yb, Er, Dy) ceramics for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2017, 37: 4991
82 Yu J X, Wang C M, Guo L, et al. Hot corrosion behavior of Ba2DyAlO5 exposed to calcium-magnesium-alumina-silicate at 1300oC and 1350°C [J]. Vacuum, 2018, 155: 307
83 Yang L X, Li W S, An G S, et al. Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings [J]. China Surf. Eng., 2020, 33: 91
杨乐馨, 李文生, 安国升等. LZO/8YSZ双陶瓷热障涂层CMAS的腐蚀性能 [J]. 中国表面工程, 2020, 33: 91
84 Tang C H, Li G R, Liu M J, et al. Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure [J]. China Surf. Eng., 2020, 33: 119
唐春华, 李广荣, 刘梅军等. 等离子喷涂La2Zr2O7热障涂层高温烧结的硬化行为 [J]. 中国表面工程, 2020, 33: 119
85 Zhu R B, Zou J P, Mao J, et al. Fabrication and growing kinetics of highly dispersed gadolinium zirconate nanoparticles [J]. Res. Appl. Mater. Sci., 2019, 1: 28
86 Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
87 Wang C M, Guo L, Zhang Y, et al. Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics [J]. Ceram. Int., 2015, 41: 10730
88 Guo L, Zhang Y, Zhao X X, et al. Thermal expansion and fracture toughness of (RE0.9Sc0.1)2Zr2O7 (RE = La, Sm, Dy, Er) ceramics [J]. Ceram. Int., 2016, 42: 583
89 Guo L, Li M Z, Zhang Y, et al. Improved toughness and thermal expansion of non-stoichiometry Gd2 - xZr2 + xO7 + x / 2 ceramics for thermal barrier coating application [J]. J. Mater. Sci. Technol., 2016, 32: 28
90 Wang C M, Guo L, Ye F X. LaPO4 as a toughening agent for rare earth zirconate ceramics [J]. Mater. Des., 2016, 111: 389
91 Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
92 Guo L, Li M Z, Cheng Y X, et al. Plasma sprayed nanostructured GdPO4 thermal barrier coatings: Preparation microstructure and CMAS corrosion resistance [J]. J. Am. Ceram. Soc., 2017, 100: 4209
93 Guo L, Yan Z, Li Z H, et al. GdPO4 as a novel candidate for thermal barrier coating applications at elevated temperatures [J]. Surf. Coat. Technol., 2018, 349: 400
94 Wang F, Guo L, Wang C M, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides [J]. J. Eur. Ceram. Soc., 2017, 37: 289
95 Guo L, Yan Z, Yu Y, et al. CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250oC-1350oC [J]. Corros. Sci., 2019, 154: 111
96 Zhang C L, Fei J M, Guo L, et al. Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating [J]. Ceram. Int., 2018, 44: 8818
97 Guo L, Yan Z, Dong X, et al. Composition-microstructure-mechanical property relationships and toughening mechanisms of GdPO4-doped Gd2Zr2O7 composites [J]. Composites, 2019, 161B: 473
98 Guo L, Li M Z, He S X, et al. Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings [J]. J. Alloys Compd., 2017, 698: 13
99 Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance [J]. J. Adv. Ceram., 2020, 9: 232
100 Guo L, Xin H, Zhang X M, et al. Effects of laser surface modification on phase stability and microstructures of thermal barrier coatings in V2O5 molten salt [J]. Surf. Technol., 2020, 49: 41
郭 磊, 辛 会, 张馨木等. 激光表面改性对熔盐环境下热障涂层相稳定性和微观结构的影响 [J]. 表面技术, 2020, 49: 41
101 Kang Y X, Bai Y, Du G Q, et al. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures [J]. Mater. Lett., 2018, 229: 40
102 Huang Z M, Zhou M, Li C, et al. Femtosecond laser on the surface of PTFE [J]. J. Funct. Mater., 2010, 41: 2163
黄宗明, 周 明, 李 琛等. 飞秒激光对聚四氟乙烯表面的影响 [J]. 功能材料, 2010, 41: 2163
103 Liang F, Lehr J, Danielczak L, et al. Robust non-wetting PTFE surfaces by femtosecond laser machining [J]. Int. J. Mol. Sci., 2014, 15: 13681
104 Guo L, Gao Y, Xin H. Laser modification parameters optimization and structural design of thermal barrier coatings [J]. Acta Aeronaut. Astronaut. Sin., 2020: 1, doi: 10.7527/S1000-6893.2020.24114
郭 磊, 高 远, 辛 会. 热障涂层的激光表面改性参数优化和结构设计 [J]. 航空学报, 2020: 1, doi: 10.7527/S1000-6893.2020.24114
105 Chen L Q, Gong S K, Xu H B. Influence of vertical cracks on failure mechanism of EB-PVD thermal barrier coatings during thermal cycling [J]. Acta. Metall. Sin., 2005, 41: 979
陈立强, 宫声凯, 徐惠彬. 垂直裂纹对EB-PVD热障涂层热循环失效模式的影响 [J]. 金属学报, 2005, 41: 979
106 Ma W, Gong S K, Xu H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions [J]. Scr. Mater., 2006, 54: 1505
107 Cao X Q, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2004, 24: 1
108 Gao L H, Guo H B, Gong S K, et al. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration [J]. J. Eur. Ceram. Soc., 2014, 34: 2553
109 Dilba D. We've got protection covered [R]. AERO REPORT. Germany: MTU Aero Engines, 2017
[1] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[2] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[3] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[4] Hanqing LIU, Chao HE, Zhiyong HUANG, Qingyuan WANG. Very High Cycle Fatigue Failure Mechanism of TC17 Alloy[J]. 金属学报, 2017, 53(9): 1047-1054.
[5] Xiaoguang HOU,Engang WANG,Xiujie XU,Anyuan DENG,Wanlin WANG. EFFECT OF THERMAL BARRIER COATINGS ABOVE MOULD MENISCUS ON MOULD HEAT TRANSFER AND OSCILLATION MARK MORPHOLOGY OF STRANDS[J]. 金属学报, 2015, 51(9): 1145-1152.
[6] GONG Wenbiao, LI Renwei, LI Yupeng,SUN Daqian, WANG Wenquan. STABILIZATION AND CORROSION RESISTANCE UNDER HIGH-TEMPERATURE OF NANOSTRUCTURED CeO2/ZrO2-Y2O3 THERMAL BARRIER COATING[J]. 金属学报, 2013, 49(5): 593-598.
[7] XIANG Jianying CHEN Shuhai HUANG Jihua ZHAO Xingke ZHANG Hua. THERMAL SHOCK RESISTANCE OF La2(Zr0.7Ce0.3)2O7 THERMAL BARRIER COATING PREPARED BY ATMOSPHERIC PLASMA SPRAYING[J]. 金属学报, 2012, 48(8): 965-970.
[8] CHEN Liqiang; GONG Shengkai; XU Huibin. INFLUENCE OF VERTICAL CRACKS ON FAILURE MECHANISM OF EB-PVD THERMAL BARRIER COATINGS DURING THERMAL CYCLING[J]. 金属学报, 2005, 41(9): 979-984 .
[9] WU Yingna; KE Peiling; SUN Chao; HUA Weigang; WANG Fuhui; WEN Lishi. NiCrAlY/NiAl/ZrO2-Y2O3 Thermal Barrier Coatings Obtained by Detonation Spraying[J]. 金属学报, 2004, 40(5): 541-545 .
[10] LU Yuxiong;BI Jing;CHEN Liqing;ZHAO Mingjiu (Institute of Metal Research;Chinese Academy of Sciences;Shenyang 110015). EFFECTS OF PARTICLE SIZE AND MATRIX STRENGTH ON THE FAILURE MECHANISM OF SiC_p REINFORCED ALUMINIUM MATRIX COMPOSITES[J]. 金属学报, 1998, 34(11): 1188-1192.
[11] HU Wangyu; GUAN Hengrong; SUN Xiaofeng; LI Shizhuo; FUKUMOTO Masahiro;OKANE Isao(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Applied Physics; Hunan University; Changsha 410082)(Toyobashi University of Technology Toyobashi; Japan)Correspondent: SUN Xiaofeng; associate profssor Tel: (024)23843531-55608; Fax: (024)23891320. THERMAL SHOCK BEHAVIOR OF ZrO_2/Ni GRADED THERMAL BARRIER COATINGS[J]. 金属学报, 1998, 34(10): 1104-1114.
[12] LI Yunqing; TANG Xiangyun; M A Jusheng; HUANG Le(Tsinghua University; Beijing)(Manuscript received 19 July; 1993: in revised form 18 October; 1993). ISOTHERMAL SHEAR LOW-CYCLE FATIGUE BEHAVIOUR OF 62Sn-36Pb-2Ag SURFACE MOUNT SOLDER JOINTS[J]. 金属学报, 1994, 30(4): 164-169.
No Suggested Reading articles found!