Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten
YI Xiaoou1(), HAN Wentuo1, LIU Pingping1, FERRONI Francesco2, ZHAN Qian1, WAN Farong1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.Department of Materials, University of Oxford, Oxford OX1 3PH, U. K.
Cite this article:
YI Xiaoou, HAN Wentuo, LIU Pingping, FERRONI Francesco, ZHAN Qian, WAN Farong. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten. Acta Metall Sin, 2021, 57(3): 257-271.
Tungsten (W) is a prime candidate for use in plasma-facing components in fusion reactors. These components are subjected to high temperatures and displacement damages caused by fusion neutron bombardments. The displacement damages are mainly present as high concentrations of point defects and clusters. They interact with the hydrogen, helium plasma, and various other transmutation products, giving rise to unwanted consequences, such as radiation hardening, increased brittle-to-ductile transition temperature, and thermal conductivity degradation. This review focuses on the radiation-induced displacement damage in tungsten and aims to provide a systematic summary of the underlying mechanisms for the production, evolution, and thermal recovery of radiation defect, using defect microscopy techniques and materials multiscale modeling. The information uncovered, reflects statistical laws of radiation defect characteristics; serves as the basis for a quantitative description of time- and space-dependent evolution of damage microstructure; and is in great favor of material property prediction, reliability evaluation, and the future development of novel materials.
Fig.1 Spatial distribution analysis of radiation defects in individual collision cascades of tungsten[55]
Fig.2 Evolution behaviour of radiation defects[47]
Fig.3 Dose rate effect upon radiation defect densities (loops or voids) in tungsten (Neutron irradiations: HFIR, 0.6 dpa, 363-997 K[86]; JOYO, 0.17-0.44 dpa, 804-1029 K[14,85]; ion irradiation: 2 MeV W+, 0.4 dpa, 573-773 K and 1.2 dpa, 1023 K[76])
Fig.4 Evolution of damage structure in 2 MeV W+ ion irradiated tungsten (773 K, 1.5 dpa) during dynamic annealing from room temperature (R.T.) to 1473 K (a-h) (Imaging condition: two-beam kinematical bright-field, g=00)[119]
1
McCracken G, Scott P. Fusion: The Energy of the Universe [M]. 2nd Ed., Oxford: Elsevier, 2013: 15
2
Abernethy R G. Predicting the performance of tungsten in a fusion environment: A literature review [J]. Mater. Sci. Technol., 2017, 33: 388
3
Stork D, Zinkle S J. Introduction to the special issue on the technical status of materials for a fusion reactor [J]. Nucl. Fusion, 2017, 57: 092001
4
Rieth M, Boutard J L, Dudarev S L, et al. Review on the EFDA programme on tungsten materials technology and science [J]. J. Nucl. Mater., 2011, 417: 463
5
Habainy J, Dai Y, Lee Y, et al. Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa [J]. J. Nucl. Mater., 2018, 509: 152
6
Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
7
Dudarev S L. Density functional theory models for radiation damage [J]. Annu. Rev. Mater. Res., 2013, 43: 35
8
Ackland G J, Finnis M W. Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals [J]. Philos. Mag., 1986, 54A: 301
9
Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
10
Nordlund K, Zinkle S J, Sand A E, et al. Improving atomic displacement and replacement calculations with physically realistic damage models [J]. Nat. Commun., 2018, 9: 1084
11
E 521-96 Standard practice for neutron radiation damage simulation by charged-particle irradiation [S]. Pennsylvania: ASTM International, 2009
12
Gilbert M R, Sublet J C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J]. Nucl. Fusion, 2011, 51: 043005
13
Gilbert M R, Dudarev S L, Nguyen-Manh D, et al. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials [J]. J. Nucl. Mater., 2013, 442: S755
14
Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on neutron irradiation hardening of tungsten [J]. Mater. Trans., 2007, 48: 2399
15
Kong X S, Wu X B, You Y W, et al. First-principles calculations of transition metal-solute interactions with point defects in tungsten [J]. Acta Mater., 2014, 66: 172
16
Hu X X, Parish C M, Wang K, et al. Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum [J]. Acta Mater., 2019, 165: 51
17
Harrison R W, Greaves G, Hinks J A, et al. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten [J]. J. Nucl. Mater., 2017, 495: 492
18
Kong X S, Wu X B, Liu C S, et al. First-principles calculations of transition metal solute interactions with hydrogen in tungsten [J]. Nucl. Fusion, 2016, 56: 026004
19
Wirth B D, Hu X X, Kohnert A, et al. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies [J]. J. Mater. Res., 2015, 30: 1440
20
Li M M, Kirk M A, Baldo P M, et al. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling [J]. Philos. Mag., 2012, 92: 2048
21
Kirk M A, Li M M, Xu D H, et al. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling [J]. J. Nucl. Mater., 2018, 498: 199
22
Xu D H, Wirth B D, Li M M, et al. Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling [J]. Curr. Opin. Solid State Mater. Sci., 2012, 16: 109
23
Nordlund K, Zinkle S J, Sand A E, et al. Primary radiation damage: A review of current understanding and models [J]. J. Nucl. Mater., 2018, 512: 450
24
Kinchin G H, Pease R S. The displacement of atoms in solids by radiation [J]. Rep. Prog. Phys., 1955, 18: 1
25
Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates [J]. Nucl. Eng. Des., 1975, 33: 50
26
Maury F, Biget M, Vajda P, et al. Frenkel pair creation and stage I recovery in W crystals irradiated near threshold [J]. Radiat. Eff., 1978, 38: 53
27
Gilbert M R, Marian J, Sublet J C. Energy spectra of primary knock-on atoms under neutron irradiation [J]. J. Nucl. Mater., 2015, 467: 121
28
De Backer A, Sand A, Ortiz C J, et al. Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory [J]. Phys. Scr., 2016, 2016: 014018
29
Gilbert M R, Sublet J C. PKA distributions: Contributions from transmutation products and from radioactive decay [J]. Nucl. Mater. Energy, 2016, 9: 576
30
Gilbert M R, Sublet J C. Differential dpa calculations with SPECTRA-PKA [J]. J. Nucl. Mater., 2018, 504: 101
31
Zhang J Z. Fractals [M]. 2nd Ed., Beijing: Tsinghua University Press, 2011: 8
张济忠. 分形 [M]. 第2版. 北京: 清华大学出版社, 2011: 8
32
Moreno-Marin J C, Conrad U, Urbassek H M, et al. Fractal structure of collision cascades [J]. Nucl. Instr. Meth. Phys. Res., 1990, 48B: 404
33
Cheng Y T. On the fractal nature of collision cascades [A]. Materials Modification by High-Fluence Ion Beams. NATO ASI Series (Series E: Applied Sciences) [C]. Dordrecht: Springer, 1989: 191
34
Sand A E, Dudarev S L, Nordlund K. High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws [J]. EPL, 2013, 103: 46003
35
De Backer A, Sand A E, Nordlund K, et al. Subcascade formation and defect cluster size scaling in high-energy collision events in metals [J]. EPL, 2016, 115: 26001
36
Sand A E, Nordlund K, Dudarev S L. Radiation damage production in massive cascades initiated by fusion neutrons in tungsten [J]. J. Nucl. Mater., 2014, 455: 207
37
Sand A E, Mason D R, De Backer A, et al. Cascade fragmentation: Deviation from power law in primary radiation damage [J]. Mater. Res. Lett., 2017, 5: 357
38
Sand A E, Aliaga M J, Caturla M J, et al. Surface effects and statistical laws of defects in primary radiation damage: Tungsten vs. iron [J]. EPL, 2016, 115: 36001
39
Hofmann F, Nguyen-Manh D, Gilbert M R, et al. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling [J]. Acta Mater., 2015, 89: 352
40
Nguyen-Manh D, Horsfield A P, Dudarev S L. Self-interstitial atom defects in bcc transition metals: Group-specific trends [J]. Phys. Rev., 2006, 73B: 020101(R)
41
Eyre B L, Bullough R. On the formation of interstitial loops in b.c.c. metals [J]. Philos. Mag., 1965, 12: 31
42
Häussermann V F. Eine elektronenmikroskopische analyse von versetzungsringen in wolfram nach bestrahlung mit 60 keV-goldionen [J]. Philos. Mag., 1972, 25: 561
43
Häussermann V F. Elektronenmikroskopische untersuchung der strahlenschädigung durch hochenergetische goldionen in den kubisch-raumzentrierten metallen molybdan und wolfram [J]. Philos. Mag., 1972, 25: 583
44
Häussermann F, Rühle M, Wilkens M. Black-white contrast figures from small dislocation loops II. Application of the first order solution to small loops in ion-irradiated tungsten foils [J]. Phys. Stat. Sol., 1972, 50B: 445
45
Jäger W, Wilkens M. Formation of vacancy-type dislocation loops in tungsten bombarded by 60 keV Au ions [J]. Phys. Status Solidi, 1975, 32A: 89
46
Yi X O, Jenkins M J, Kirk M A, et al. In-situ electron microscope observations and analysis of radiation damage in tungsten [J]. Microsc. Microanal., 2015, 21: 117
47
Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution [J]. Acta Mater., 2016, 112: 105
48
Ventelon L, Willaime F, Fu C C, et al. Ab initio investigation of radiation defects in tungsten: Structure of self-interstitials and specificity of di-vacancies compared to other bcc transition metals [J]. J. Nucl. Mater., 2012, 425: 16
49
Gilbert M R, Dudarev S L, Derlet P M, et al. Structure and metastability of mesoscopic vacancy and interstitial loop defects in iron and tungsten [J]. J. Phys.: Condens. Matter, 2008, 20: 345214
50
Mason D R, Yi X, Kirk M A, et al. Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils [J]. J. Phys.: Condens. Matter, 2014, 26: 375701
51
Mason D R, Yi X O, Sand A E, et al. Experimental observation of the number of visible defects produced in individual primary damage cascades in irradiated tungsten [J]. EPL, 2018, 122: 66001
52
Yi X, Jenkins M L, Briceno M, et al. In situ study of self-ion irradiation damage in W and W-5Re at 500oC [J]. Philos. Mag., 2013, 93: 1715
53
Kirk M A, Robertson I M, Jenkins M L, et al. The collapse of defect cascades to dislocation loops [J]. J. Nucl. Mater., 1987, 149: 21
54
Yi X, Sand A E, Mason D R, et al. Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades [J]. EPL, 2015, 110: 36001
55
Mason D R, Sand A E, Yi X, et al. Direct observation of the spatial distribution of primary cascade damage in tungsten [J]. Acta Mater., 2018, 144: 905
56
Jenkins M L, English C A, Eyre B L. Heavy-ion irradiation of α-iron [J]. Philos. Mag., 1978, 38A: 97
57
English C A, Jenkins M. Insight into cascade processes arising from studies of cascade collapse [J]. Mater. Sci. Forum, 1987, 15-18: 1003
58
Robertson I M, Jenkins M L, English C A. Low-dose neutron-irradiation damage in α-iron [J]. J. Nucl. Mater., 1982, 108-109: 209
59
Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses [J]. Philos. Mag., 2008, 88: 2851
60
Robertson I M, Kirk M A, King W E. Formation of dislocation loops in iron by self-ion irradiations at 40 K [J]. Scr. Metall., 1984, 18: 317
61
Sand A E, Byggmästar J, Zitting A, et al. Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metals [J]. J. Nucl. Mater., 2018, 511: 64
62
Amino T, Arakawa K, Mori H. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy [J]. Sci. Rep., 2016, 6: 26099
63
Arakawa K, Marinica M C, Fitzgerald S, et al. Quantum de-trapping and transport of heavy defects in tungsten [J]. Nat. Mater., 2020, 19: 508
64
Amino T, Arakawa K, Mori H. Activation energy for long-range migration of self-interstitial atoms in tungsten obtained by direct measurement of radiation-induced point-defect clusters [J]. Philos. Mag. Lett., 2011, 91: 86
65
Sikka V K, Moteff J. Superlattice of voids in neutron-irradiated tungsten [J]. J. Appl. Phys., 1972, 43: 4942
66
Li X Y, Liu W, Xu Y C, et al. An energetic and kinetic perspective of the grain-boundary role in healing radiation damage in tungsten [J]. Nucl. Fusion, 2013, 53: 123014
67
Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten [J]. J. Nucl. Mater., 2009, 386-388: 218
68
Johnson P B, Mazey D J. Gas-bubble superlattice formation in bcc metals [J]. J. Nucl. Mater., 1995, 218: 273
69
Harrison R W, Greaves G, Hinks J A, et al. Engineering self-organising helium bubble lattices in tungsten [J]. Sci. Rep., 2017, 7: 7724
70
Sikka V K, Moteff J. “Rafting” in neutron irradiated tungsten [J]. J. Nucl. Mater., 1973, 46: 217
71
Wen M, Ghoniem N M, Singh B N. Dislocation decoration and raft formation in irradiated materials [J]. Philos. Mag., 2005, 85: 2561
72
Dudarev S L, Arakawa K, Yi X, et al. Spatial ordering of nano-dislocation loops in ion-irradiated materials [J]. J. Nucl. Mater., 2014, 455: 16
73
El-Atwani O, Aydogan E, Esquivel E, et al. Detailed transmission electron microscopy study on the mechanism of dislocation loop rafting in tungsten [J]. Acta Mater., 2018, 147: 277
74
Arakawa K, Amino T, Mori H. Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors [J]. Acta Mater., 2011, 59: 141
75
Gilbert M R. BCC metals in extreme environments: Modelling the structure and evolution of defects [D]. Oxford: University of Oxford, 2010
76
Yi X O, Jenkins M L, Hattar K, et al. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations [J]. Acta Mater., 2015, 92: 163
77
Tanno T, Fukuda M, Nogami S, et al. Microstructure development in neutron irradiated tungsten alloys [J]. Mater. Trans., 2011, 52: 1447
78
Hasegawa A, Fukuda M, Nogami S, et al. Neutron irradiation effects on tungsten materials [J]. Fus. Eng. Des., 2014, 89: 1568
79
Hasegawa A, Fukuda M, Tanno T, et al. Neutron irradiation behavior of tungsten [J]. Mater. Trans., 2013, 54: 466
80
Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016, 471: 175
81
Chrominski W, Ciupinski L, Bazarnika P, et al. TEM investigation of the influence of dose rate on radiation damage and deuterium retention in tungsten [J]. Mater. Charact., 2019, 154: 1
82
Schwarz-Selinger T, Bauer J, Elgeti S, et al. Influence of the presence of deuterium on displacement damage in tungsten [J]. Nucl. Mater. Energy, 2018, 17: 228
83
Zhang C H. Study of radiation damage of materials candidate to advanced nuclear energy systems by utilizing high-energy heavy ions at HIRFL [J]. Nucl. Phys. Rev., 2017, 34: 803
Mansur L K. Correlation of neutron and heavy-ion damage: II. The predicted temperature shift if swelling with changes in radiation dose rate [J]. J. Nucl. Mater., 1978, 78: 156
85
Fukuda M, Tanno T, Nogami S, et al. Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten [J]. Mater. Trans., 2012, 53: 2145
86
Hu X X, Koyanagi T, Fukuda M, et al. Irradiation hardening of pure tungsten exposed to neutron irradiation [J]. J. Nucl. Mater., 2016, 480: 235
87
Rieth M, Doerner R, Hasegawa A, et al. Behavior of tungsten under irradiation and plasma interaction [J]. J. Nucl. Mater., 2019, 519: 334
88
Wróbel J S, Nguyen-Manh D, Kurzydłowski K J, et al. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys [J]. J. Phys.: Condens. Matter, 2017, 29: 145403
89
Ekman M, Persson K, Grimvall G. Phase diagram and lattice instability in tungsten-rhenium alloys [J]. J. Nucl. Mater., 2000, 278: 273
90
Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements [J]. Acta Mater., 2015, 87: 121
91
Suzudo T, Yamaguchi M, Hasegawa A. Stability and mobility of rhenium and osmium in tungsten: First principles study [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 075006
92
Suzudo T, Yamaguchi M, Hasegawa A. Migration of rhenium and osmium interstitials in tungsten [J]. J. Nucl. Mater., 2015, 467: 418
93
Hasegawa A, Takashi T, Nogami S, et al. Property change mechanism in tungsten under neutron irradiation in various reactors [J]. J. Nucl. Mater., 2011, 417: 491
94
Xu A L, Armstrong D E J, Beck C, et al. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study [J]. Acta Mater., 2017, 124: 71
95
Harrison R W, Amari H, Greaves G, et al. Effect of He-appm/DPA ratio on the damage microstructure of tungsten [J]. MRS Adv., 2016, 1: 2893
96
Nguyen-Manh D, Dudarev S L. Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation [J]. Nucl. Instr. Meth. Phys. Res., 2015, 352B: 86
97
Ipatova I, Harrison R W, Wady P T, et al. Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage [J]. J. Nucl. Mater., 2018, 501: 329
98
Ferroni F, Tarleton E, Fitzgerald S. Dislocation dynamics modelling of radiation damage in thin films [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 045009
99
Zheng R Y, Han W Z. Comparative study of radiation defects in ion irradiated bulk and thin-foil tungsten [J]. Acta Mater., 2020, 186: 162
100
Zhang Z X, Yabuuchi K, Kimura A. Defect distribution in ion-irradiated pure tungsten at different temperatures [J]. J. Nucl. Mater., 2016, 480: 207
101
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
102
Huang Y, Wiezorek J M K, Garner F A, et al. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II [J]. J. Nucl. Mater., 2015, 465: 516
103
Zhang T, Deng H W, Xie Z M, et al. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces [J]. J. Mater. Sci. Technol., 2020, 52: 29
104
Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview [J]. J. Alloys Compd., 2019, 779: 926
105
El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments [J]. Sci. Rep., 2014, 4: 4716
106
El-Atwani O, Hinks J A, Greaves G, et al. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten [J]. Mater. Res. Lett., 2017, 5: 343
107
Han W Z, Demkowicz M J, Fu E G, et al. Effect of grain boundary character on sink efficiency [J]. Acta Mater., 2012, 60: 6341
108
Yang X L, Qiu W B, Chen L Q, et al. Tungsten-potassium: A promising plasma-facing material [J]. Tungsten, 2019, 1: 141
109
Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
110
Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement [J]. Mater. Trans., 2013, 54: 456
111
Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5: 12755
112
Zhu H L. A theory of swelling due to void growth in irradiated materials (I): Neutral sinks [J]. Acta Phys. Sin., 1989, 38: 1443
朱慧珑. 辐照材料的肿胀理论(Ⅰ)——中性尾闾 [J]. 物理学报, 1989, 38: 1443
113
Bullough R, Hayns M R, Wood M H. Sink strengths for thin film surfaces and grain boundaries [J]. J. Nucl. Mater., 1980, 90: 44
114
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
115
Keys L K, Moteff J. Neutron irradiation and defect recovery of tungsten [J]. J. Nucl. Mater., 1970, 34: 260
116
Bowkett K M, Ralph B. The annealing of radiation damage in tungsten investigated by field-ion microscopy [J]. Proc. R. Soc., London1969, 312A: 51
117
Kim Y M, Galligan J M. Radiation damage and stage III defect annealing in thermal neutron irradiated tungsten [J]. Acta Metall., 1978, 26: 379
118
Hu X X, Koyanagi T, Fukuda M, et al. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 278
119
Ferroni F, Yi X O, Arakawa K, et al. High temperature annealing of ion irradiated tungsten [J]. Acta Mater., 2015, 90: 380
120
Ferroni F. Electron microscopy and multi-scale modelling of radiation damage recovery in tungsten [D]. Oxford: University of Oxford, 2016
121
Swinburne T D, Arakawa K, Mori H, et al. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals [J]. Sci. Rep., 2016, 6: 30596
122
Wilson K L, Baskes M I, Seidman D N. An in situ field-ion microscope study of the recovery behavior of ion-irradiated tungsten and tungsten alloys [J]. Acta Metall., 1980, 28: 89
123
Yi X O, Arakawa K, Du Y F, et al. High-temperature defect recovery in self-ion irradiated W-5 wt%Ta [J]. Nucl. Mater. Energy, 2019, 18: 93