Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (3): 272-282    DOI: 10.11900/0412.1961.2020.00161
Overview Current Issue | Archive | Adv Search |
Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents
QIAN Yi1,2, YUAN Guangyin1()
1.National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
2.Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Cite this article: 

QIAN Yi, YUAN Guangyin. Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents. Acta Metall Sin, 2021, 57(3): 272-282.

Download:  HTML  PDF(1018KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Human body can absorb and degrade Zn. Among the biodegradable metals of Mg, Zn, and Fe, the degradation rate of Zn is the most suitable for the clinical requirements of vascular stents. Zinc ion is an essential nutrient in human body; it participates in the metabolic activities of more than 200 enzymes. Zn promotes and maintains the integrity of vascular endothelium and inhibits the progress of artery atherosclerosis, making it naturally advantageous as a vascular stent material. This review systematically summarizes the research in the field of biodegradable zinc-based vascular stents based on recent studies conducted by the author's research team. In addition, this review introduces and discusses the research background, status, and challenges as well as the countermeasures of the challenges and prospects for the future development of biodegradable Zn-based vascular stents. It is expected that the comments and itemized strategies for solving the identified challenges in this review can inspire related researchers to perform research studies in associated fields in China.

Key words:  biodegradable zinc-based alloy vascular stent      research status      clinical challenge      countermeasure     
Received:  13 May 2020     
ZTFLH:  TG146.1  
Fund: National Key Research and Development Program of China(2018YFE0115400);National Natural Science Foundation of China(51971134);Interdisciplinary Project of Shanghai Jiao Tong University, China(ZH2018ZDA34)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00161     OR     https://www.ams.org.cn/EN/Y2021/V57/I3/272

Fig.1  The ideal model between the mechanical integrity and degradation of biodegradable scaffold during the vascular healing process[21]
AlloyPreparation processIn vitro (immersion test)In vivoRef.
mm·a-1mm·a-1
ZnAs-drawn0.012 (45 d)[4]
0.05 (180 d)
Zn-0.8CuAs-extruded & as-drawn0.016 (180 d)[5]
Zn-LiAs-drawn0.08 (60 d)[26]
0.046 (12 months)
ZnAs-extruded0.022SBF (20 d)[27]
Zn-MgAs-extruded0.084Hank's (14 d)[28]
Zn-AgAs-extruded0.015Hank's (28 d)[29]
Zn-CuAs-extruded0.033SBF (20 d)[27]
Zn-CaAs-rolled0.089Hank's (14 d)[30]
Zn-SrAs-rolled0.098Hank's (14 d)[30]
Zn-0.05ZrAs-extruded0.014Hank's (28 d)[29]
Zn-3Cu-0.1MgAs-extruded0.022Hank's (20 d)[31]
Zn-3Cu-1MgAs-extruded0.043Hank's (20 d)[31]
Zn-3Cu-0.5FeAs-extruded0.064SBF (20 d)[32]
Zn-3Cu-1FeAs-extruded0.069SBF (20 d)[32]
Zn-0.35Mn-0.41CuAs-rolled0.050SBF (14 d)[33]
Zn-0.75Mn-0.40CuAs-rolled0.065SBF (14 d)[33]
Zn-1.5Mg-0.1MnAs-cast0.080Hank's (30 d)[34]
0.065Hank's (90 d)
Zn-Mg-0.1MnAs-rolled0.115Hank's (30 d)[34]
0.070Hank's (90 d)
Zn-Mg-CaAs-extruded0.090Hank's (56 d)[35]
Zn-Mg-SrAs-extruded0.095Hank's (56 d)[35]
Zn-Ca-SrAs-extruded0.109Hank's (56 d)[35]
Zn-Ag-0.05ZrAs-extruded0.017Hank's (28 d)[29]
Table 1  In vivo and in vitro degradation rate of degradable Zn-based alloy[4,5,26-35]
Fig.2  Test results reported about self-ageing performance of medical zinc alloys at room temperature (a)[37] compared with those of degradable Zn-Cu alloys developed by our research team (b) (Fig.2a shows that the tensile elongation of the Zn-Mg alloy[37] was 30% when it was newly made, and dropped sharply to 4% after one year's storage at room temperature, indicating obvious self-ageing characteristics. While the patent Zn-Cu alloy developed by our team showed almost the same tensile elongation of 58% after 20 months' storage at room temperature, showing excellent anti-ageing and deformability)
1 Chen W W, Gao R L, Liu L S, et al. Summary of China cardiovascular disease report 2017 [J]. Chin. Circ. J., 2018, 33: 1
陈伟伟, 高润霖, 刘力生等. 《中国心血管病报告2017》概要 [J]. 中国循环杂志, 2018, 33: 1
2 Onuma Y, Ormiston J, Serruys P W. Bioresorbable scaffold technologies [J]. Circ. J., 2011, 75: 509
3 Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
王鲁宁, 孟 瑶, 刘丽君等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
4 Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
5 Zhou C, Li H F, Yin Y X, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery [J]. Acta Biomater., 2019, 97: 657
6 Wu Y Z, Ge J B. Views on current situation and future of bioabsorbable scaffolds from ABSORB serial researches [J]. Geriatr. Health Care, 2018, 24(2): 97
吴轶喆, 葛均波. 从ABSORB系列研究看生物可吸收支架现状和未来之路 [J]. 老年医学与保健, 2018, 24(2): 97
7 Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227
8 Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial [J]. Lancet, 2007, 369: 1869
9 Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Mater. Sci. Eng. Rep., 2014, R77: 1
10 Lin W J, Qin L, Qi H P, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold [J]. Acta Biomater., 2017, 54: 454
11 Little P J, Bhattacharya R, Moreyra A E, et al. Zinc and cardiovascular disease [J]. Nutrition, 2010, 26: 1050
12 Yang H T, Wang C, Liu C Q, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model [J]. Biomaterials, 2017, 145: 92
13 Zeng W J, Ling Y, Zhi X X. Biomechanics and biocompatibility characteristics of cardiovascular stents [J]. J. Clin. Rehabil. Tissue Eng. Res., 2008, 12: 2531
曾伟杰, 凌 友, 支晓兴. 心血管支架材料生物力学及生物相容性特征 [J]. 中国组织工程研究与临床康复, 2008, 12: 2531
14 Shearier E R, Bowen P K, He W L, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc [J]. ACS Biomater. Sci. Eng., 2016, 2: 634
15 Zhu D H, Cockerill I, Su Y C, et al. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials [J]. ACS Appl. Mater. Interfaces, 2019, 11: 6809
16 Ma J, Zhao N, Zhu D H. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells [J]. Sci. Rep., 2016, 6: 26661
17 Liu X, Lu H. The advances in research of the research of restenosis after percutaneous transluminal coronary angioplasty [J]. Chin. J. Card. Rev., 2007, 5: 854
刘 晓, 陆 红. PTCA术后再狭窄形成机制的研究进展 [J]. 中国心血管病研究, 2007, 5: 854
18 Bowen P K, Guillory II R J, Shearier E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents [J]. Mater. Sci. Eng., 2015, C56: 467
19 Ma J, Zhao N, Zhu D H. Endothelial cellular responses to biodegradable metal zinc [J]. ACS Biomater. Sci. Eng., 2015, 1: 1174
20 Chen Z J, Gao R L. Coronary Heart Disease [M]. Beijing: People's Medical Publishing House, 2002: 676
陈在嘉, 高润霖. 冠心病 [M]. 北京: 人民卫生出版社, 2002: 676
21 Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents [J]. Acta Biomater., 2010, 6: 1693
22 Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Mater., 2018, 71: 1
23 Chen Y Q, Zhang W T, Maitz M F, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline [J]. Corros. Sci., 2016, 111: 541
24 Vojtěch D, Kubásek J, Šerák J, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation [J]. Acta Biomater., 2011, 7: 3515
25 Wang L Q, Ren Y P, Qin G W. Research progress of Zn-based alloys as biodegradable materials [J]. Chin. J. Rare Met., 2017, 41: 571
王利卿, 任玉平, 秦高梧. 生物可降解锌基合金的研究进展 [J]. 稀有金属, 2017, 41: 571
26 Zhao S, Seitz J M, Eifler R, et al. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat [J]. Mater. Sci. Eng., 2017, C76: 301
27 Tang Z B, Niu J L, Huang H, et al. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications [J]. J. Mech. Behav. Biomed. Mater., 2017, 72: 182
28 Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
29 Wątroba M, Bednarczyk W, Kawałko J, et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material [J]. Mater. Des., 2019, 183: 108154
30 Li H F, Xie X H, Zheng Y F, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr [J]. Sci. Rep., 2015, 5: 10719
31 Tang Z B, Huang H, Niu J L, et al. Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants [J]. Mater. Des., 2017, 117: 84
32 Yue R, Huang H, Ke G Z, et al. Microstructure, mechanical properties and in vitro degradation behavior of novel Zn-Cu-Fe alloys [J]. Mater. Charact., 2017, 134: 114
33 Shi Z Z, Yu J, Liu X F, et al. Fabrication and characterization of novel biodegradable Zn-Mn-Cu alloys [J]. J. Mater. Sci. Technol., 2018, 34: 1008
34 Liu X W, Sun J K, Zhou F Y, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application [J]. Mater. Des., 2016, 94: 95
35 Li H F, Yang H T, Zheng Y F, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr [J]. Mater. Des., 2015, 83: 95
36 Su Y C, Wang Y D, Tang L P, et al. Development of biodegradable Zn-based medical implants [A]. Orthopedic Biomaterials [C]. Cham: Springer, 2017: 311
37 Jin H L, Zhao S, Guillory R, et al. Novel high-strength, low-alloys Zn-Mg (<0.1wt% Mg) and their arterial biodegradation [J]. Mater. Sci. Eng., 2018, C84: 67
38 Sun S N, Ren Y P, Wang L Q, et al. Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys [J]. Mater. Sci. Eng., 2017, A701: 129
39 Dai Y L, Zhang Y, Liu H, et al. Mechanical strengthening mechanism of Zn-Li alloy and its mini tube as potential absorbable stent material [J]. Mater. Lett., 2019, 235: 220
40 Niu J L, Tang Z B, Huang H, et al. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application [J]. Mater. Sci. Eng., 2016, C69: 407
41 Yue R, Zhang J, Ke G Z, et al. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5 Fe alloy [J]. Mater. Sci. Eng., 2019, C105: 110106
42 Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nat. Commun., 2020, 11: 401
43 Bowen P K, Shearier E R, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys [J]. Adv. Healthcare Mater., 2016, 5: 1121
44 Yuan G Y, Amiya K, Inoue A. Structural relaxation, glass-forming ability and mechanical properties of Mg-Cu-Ni-Gd alloys [J]. J. Non-Cryst. Solids, 2005, 351: 729
45 Huang H, Yuan G Y. Biodegradable medical zinc copper alloy and preparation method and purpose thereof [P]. Chin Pat, 201510512800.6, 2015
黄 华, 袁广银. 生物可降解的医用锌铜合金及其制备方法和用途 [P]. 中国专利, 201510512800.6, 2015)
46 Caroli S, Alimonti A, Coni E, et al. The assessment of reference values for elements in human biological tissues and fluids: A systematic review [J]. Crit. Rev. Anal. Chem., 1994, 24: 363
47 Patterson K Y, Holbrook J T, Bodner J E, et al. Zinc, copper, and manganese intake and balance for adults consuming self-selected diets [J]. Am. J. Clin. Nutr., 1984, 40(suppl.6): 1397
48 Liu C, Fu X K, Pan H B, et al. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects [J]. Sci. Rep., 2016, 6: 27374
49 Sikora-Jasinska M, Mostaed E, Mostaed A, et al. Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn-Ag alloys for degradable implant applications [J]. Mater. Sci. Eng., 2017, C77: 1170
50 Li P, Schille C, Schweizer E, et al. Mechanical characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material [J]. Int. J. Mol. Sci., 2018, 19: 755
51 Xie Y, Zhao L C, Zhang Z, et al. Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials [J]. Mater. Chem. Phys., 2018, 219: 433
52 Bednarczyk W, Wątroba M, Kawałko J, et al. Determination of room-temperature superplastic asymmetry and anisotropy of Zn-0.8Ag alloy processed by ECAP [J]. Mater. Sci. Eng., 2019, A759: 55
53 Bednarczyk W, Wątroba M, Kawałko J, et al. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP [J]. Mater. Sci. Eng., 2019, A748: 357
54 Zhao M J, Jin L, Dong J, et al. Influence of twinning behavior on mechanical property of pure zinc deformed at room temperature [J]. Chin. J. Nonferrous Met., 2018, 28: 1808
赵梦杰, 靳 丽, 董 杰等. 室温变形过程中纯Zn的孪生行为对力学性能的影响 [J]. 中国有色金属学报, 2018, 28: 1808
55 Chen C X, Chen J H, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy [J]. Biomaterials, 2019, 221: 119414
56 Haessner F, Hoschek G, Tölg G. Stored energy and recrystallization temperature of rolled copper and silver single crystals with defined solute contents [J]. Acta Metall., 1979, 27: 1539
57 Bohlen J, Nürnberg M R, Senn J W, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets [J]. Acta Mater., 2007, 55: 2101
58 Chang S, Qin Z X, Lu X. Effect of V4C3 precipitation on recrystallization temperature and mechanical poperties of Fe-Mn-Al steel [J]. J. Dalian Jiaotong Univ., 2014, 35(3): 83
常 帅, 覃作祥, 陆 兴. V4C3沉淀对Fe-Mn-Al钢再结晶温度和力学性能的影响 [J]. 大连交通大学学报, 2014, 35(3): 83
59 Xiao F R, Cao Y B, Qiao G Y, et al. Effect of Nb solute and NbC precipitates on dynamic or static recrystallization in Nb steels [J]. J. Iron Steel Res. Int., 2012, 19: 52
60 Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility [J]. Metall. Mater. Trans., 2002, 33A: 813
61 Huang H, Yuan G Y, Chen C L, et al. Excellent mechanical properties of an ultrafine-grained quasicrystalline strengthened magnesium alloy with multi-modal microstructure [J]. Mater. Lett., 2013, 107: 181
62 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous Lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
63 Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J]. Acta Mater., 2004, 52: 5093
64 Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater., 2003, 51: 2055
65 Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip [J]. Prog. Mater. Sci., 1975, 19: 141
[1] Xuexi ZHANG, Zhong ZHENG, Ying GAO, Lin GENG. Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 109-125.
No Suggested Reading articles found!