Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (10): 1291-1298    DOI: 10.11900/0412.1961.2020.00320
Research paper Current Issue | Archive | Adv Search |
Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding
ZHAO Wanxin1, ZHOU Zheng1(), HUANG Jie1, YANG Yange2, DU Kaiping3, HE Dingyong1
1.Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.BGRIMM Technology Group, Beijing 100160, China
Cite this article: 

ZHAO Wanxin, ZHOU Zheng, HUANG Jie, YANG Yange, DU Kaiping, HE Dingyong. Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding. Acta Metall Sin, 2021, 57(10): 1291-1298.

Download:  HTML  PDF(2665KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To satisfy the requirement for martensite stainless steel layers with high efficiency, an optimized FeNiCrMo alloy layer was prepared using the laser cladding technique. The microstructure and frictional wear behavior of the cladding layer (a single layer with a thickness exceeding 2 mm) were investigated. The results confirmed a homogeneous thickness and crack-free character of the cladding layer. In the microstructure, equiaxed, dendritic and cellular grains were distributed along the thickness direction, and martensite and Cr/Mo-rich ferrite were observed in the dendritic and inter-dendritic regions, respectively. The frictional coefficient and wear volume of the cladding layer increased under increasing applied loads in a block-on-ring wear test, and the wear mechanism was dominated by abrasive and oxidative wear types. Under higher loads, adhesive wear prevailed. In a ball-on-disc wear test, increasing the temperature decreased the frictional coefficient and increased the wear volume. Oxidative and fatigue wear dominated the wear mechanism under this condition.

Key words:  laser cladding      FeCrNiMo stainless steel      microstructure      frictional wear     
Received:  21 August 2020     
ZTFLH:  TG174.4  
Fund: National Key Research and Development Program of China(2017YFB0306100)
About author:  ZHOU Zheng, associate researcher, Tel: (010)67392168, E-mail: zhouzhengbjut@bjut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00320     OR     https://www.ams.org.cn/EN/Y2021/V57/I10/1291

Fig.1  XRD spectrum of the cladding layer
Fig.2  Microstructures of the cladding layer along the thickness direction, in terms of integral cross-section (a), top section (b), middle section (c), and bottom section (d) (H—thickness, DR—dendritic region, IDR—inter-dendritic region)
AreaRegionFeCrNiMoSiMn
ADR83.313.21.20.61.10.6
IDR75.520.51.21.40.90.5
BDR83.712.91.10.51.20.6
IDR73.621.91.11.31.20.9
CDR82.413.51.30.81.01.0
IDR74.420.81.21.61.20.8
Table 1  EDS results for micro-area of the cladding layer in Fig.2
Fig.3  Microhardness of the cladding layer along the thickness direction
Fig.4  Frictional coefficients as a function of time for the cladding layer under different loads
Fig.5  Wear volumes and wear rates of the cladding layer under different loads
Fig.6  Worn morphologies of the cladding layer under 50 N (a), 150 N (b), and 300 N (c) loads
Fig.7  Schematics for demonstrating wear mechanism evolution of cladding layer with increased loading
PointFeCrNiMoSiMnO
173.916.41.41.10.90.76.6
272.814.71.51.30.80.98.0
356.56.30.80.70.50.634.6
466.812.61.40.70.60.717.2
Table 2  EDS results for typical regions of worn surface in Fig.6
Fig.8  Frictional coefficient as a function of time for the cladding layer under different temperature conditions
Fig.9  Wear volumes and wear rates of the cladding layer under different temperature conditions
Fig.10  Surface hardnesses of the cladding layer in relationship with elevating temperature
Fig.11  Worn morphologies of the cladding layer under 25oC (a), 300oC (b), and 600oC (c) conditions
PointFeCrNiMoSiMnO
173.716.41.41.11.50.75.2
243.610.70.91.37.70.934.9
374.511.31.01.01.20.910.1
457.17.10.70.53.30.430.9
559.010.12.01.41.40.625.5
Table 3  EDS results for typical regions of worn surface in Fig.11
Fig.12  Schematics for demonstrating wear mechanism evolution of cladding layer with elevating temperature
1 Song J L, Li Y T, Deng Q L, et al. Research progress of laser cladding forming technology [J]. J. Mech. Eng., 2010, 46(14): 29
宋建丽, 李永堂, 邓琦林等. 激光熔覆成形技术的研究进展 [J]. 机械工程学报, 2010, 46(14): 29
2 Vilar R. Laser cladding [J]. J. Laser Appl., 1999, 11: 64
3 Sexton L, Lavin S, Byrne G, et al. Laser cladding of aerospace materials [J]. J. Mater. Process. Technol., 2002, 122(1): 63
4 Zhang H, Zou Y, Zou Z D, et al. Effects of CeO2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers [J]. J. Rare Earth., 2014, 32: 1095
5 Zhou S F, Xu Y B, Liao B Q, et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding [J]. Opt. Laser Technol., 2018, 103: 8
6 Lewis S R, Fretwell-Smith D, Goodwin P S, et al. Improving rail wear and RCF performance using laser cladding [J]. Wear, 2016, 366-367: 268
7 Gao W Y, Zhang Z Y, Zhao S S, et al. Effect of a small addition of Ti on the Fe-based coating by laser cladding [J]. Surf. Coat. Technol., 2016, 291: 423
8 Tian J Y, Peng X, Liu Q B. Effects of stress-induced solid phase transformations on residual stress in laser cladding a Fe-Mn-Si-Cr-Ni alloy coating [J]. Mater. Des., 2020, 193: 108824
9 Yang L J, Zhang P X, Wang S P, et al. Microstructure and wear behavior of hard Ni60 and soft WC-12Co/Ni25 coatings prepared by laser cladding on W1813N non-magnetic stainless steel [J]. Rare Met. Mater. Eng., 2019, 48: 3441
杨理京, 张平祥, 王少鹏等. W1813N无磁不锈钢表面激光熔覆Ni60与WC-12Co/Ni25涂层的组织结构和磨损行为 [J]. 稀有金属材料与工程, 2019, 48: 3441
10 Fesharaki M N, Shoja-Razavi R, Mansouri H A, et al. Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods [J]. Surf. Coat. Technol., 2018, 353: 25
11 Du L M, Lan L W, Zhu S, et al. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 917
12 Goodarzi D M, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry [J]. Weld. World, 2017, 61: 883
13 El-Batahgy A M. Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels [J]. Mater. Lett., 1997, 32: 155
14 Zhang C, Wu B Q, Wang Q T, et al. Microstructure and properties of FeCrNiCoMnBx high-entropy alloy coating prepared by laser cladding [J]. Rare Met. Mater. Eng., 2017, 46: 2639
张 冲, 吴炳乾, 王乾廷等. 激光熔覆FeCrNiCoMnBx高熵合金涂层的组织结构与性能 [J]. 稀有金属材料与工程, 2017, 46: 2639
15 Liu Y, Li A, Cheng X, et al. Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel [J]. Mater. Sci. Eng., 2016, A666: 27
16 Zacharia T, David S A, Vitek J M, et al. Heat transfer during Nd:Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels [J]. Metall. Trans., 1989, 20A: 957
17 Zuo W J, Gu K X, Cui C, et al. Microstructure evolution and wear behavior of titanium alloy under cryogenic dry sliding wear condition [J]. Mater. Charact., 2020, 165: 110385
18 Pathak J P, Mohan S, Singh V. Wear behaviour of titanium alloy GTM-900 under dry sliding [J]. Indian J. Eng. Mater. Sci., 2002, 9: 351
19 Wu P, Zhou C C, Tang X N. Wear characteristics of Ni-base alloy and Ni/WC coatings by laser cladding [J]. Acta Metall. Sin., 2002, 38: 1257
吴 萍, 周昌炽, 唐西南. 激光熔覆镍基合金和Ni/WC涂层的磨损特性 [J]. 金属学报, 2002, 38: 1257
20 Winter T C, Neu R W, Singh P M, et al. Fretting wear comparison of cladding materials for reactor fuel cladding application [J]. J. Nucl. Mater., 2018, 508: 505
21 Cui G J, Wei J, Wu G X. Wear behavior of Fe-Cr-B alloys under dry sliding condition [J]. Ind. Lubr. Tribol., 2015, 67: 336
22 Yong Y W, Zhang X, Fu W, et al. Behavior characteristics of in-situ formed ZrC particle reinforcement composite coating by laser cladding [J]. Rare Met. Mater. Eng., 2018, 47: 1625
雍耀维, 张 翔, 傅 卫等. 激光熔覆原位制备ZrC颗粒增强涂层的行为特征 [J]. 稀有金属材料与工程, 2018, 47: 1625
23 Sahoo R, Jha B B, Sahoo T K. Experimental study on the effect of microstructure on dry sliding wear behavior of titanium alloy using Taguchi experimental design [J]. Tribol. Trans., 2014, 57: 216
24 Li B, Shen Y F, Hu W Y, et al. Surface modification of Ti-6Al-4V alloy via friction-stir processing: Microstructure evolution and dry sliding wear performance [J]. Surf. Coat. Technol., 2014, 239: 160
25 Xuan X B, Cui G J. Tribological properties of Fe-Cr-B alloy for sliding boot in coal mining machine under dry sliding condition [J]. Ind. Lubr. Tribol., 2017, 69: 142
26 Pole M, Sadeghilaridjani M, Shittu J, et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette [J]. J. Alloys Compd., 2020, 843: 156004
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!