Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (5): 715-722    DOI: 10.11900/0412.1961.2019.00275
Current Issue | Archive | Adv Search |
Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel
ZHAO Yanchun1,2(), MAO Xuejing1, LI Wensheng1, SUN Hao1, LI Chunling3, ZHAO Pengbiao1, KOU Shengzhong1, Liaw Peter K.2
1.State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200, USA
3.College of Mechano-Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel. Acta Metall Sin, 2020, 56(5): 715-722.

Download:  HTML  PDF(1970KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Amorphous steels exhibit ultra-high strength but room-temperature brittleness and strain-softening behavior as loading, which restricted the application of amorphous steels as high-performance structural material. Developing in situ crystals is an effective way to toughen the amorphous alloys. However, the crystals may sacrifice the corrosion resistance of amorphous steels. In this work, austenite and ferrite duel phases were introduced to the amorphous phase, via transformation induced plasticity (TRIP) of the austenite as loading, to enhance the ductility and improve the work-hardening behavior; and via the synergy of ferrite and amorphous phase to ensure the corrosion resistance. A novel amorphous steel Fe-15Mn-5Si-14Cr-0.2C was fabricated by magnetic suspension melting in a water-cooled copper crucible, and negative pressure suction casting into a copper mold. The microstructure and mechanical properties of the amorphous steel were characterized by XRD, EBSD and the electronic universal testing machine. The corrosion behavior in artificial seawater was studied on an electrochemical work station with a three-electrode system, and the corrosion morphology and corrosion products were characterized by SEM with EDS analysis. The results showed that the as-cast amorphous steel consisted of the amorphous matrix, CFe15.1 super-cooled austenite and Fe-Cr ferrite phases. From surface to inner, amorphous phases mainly exist in the margin, while crystalline phases are abundantly distributed in the center. The amorphous steel exhibited excellent comprehensive mechanical properties at room temperature, and its yield strength, fracture strength and plastic strain were up to 978 MPa, 2645 MPa and 35.8%, respectively. In artificial seawater, compared with 304 stainless steel, the amorphous steel showed high self-corrosion potential, low self-corrosion current density and high polarization resistance, large resistance arc radius, only one high frequency resistance arc and low corrosion kinetic rate. Moreover, the stable and dense passivation film was observed on the corrosion surface. Their excellent corrosion resistance and mechanical properties endow the amorphous steel with the potential to become a novel corrosion-resistant structural material for marine engineering.

Key words:  amorphous steel      microstructure      mechanical property      corrosion behavior     
Received:  19 August 2019     
ZTFLH:  TG139.8  
Fund: National Natural Science Foundation of China(51661017);China Scholarship Council(201808625027);Outstanding Youth Funds of Gansu Province(17JR5RA108);Hongliu Outstanding Youth Funds of Lanzhou University of Technology

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00275     OR     https://www.ams.org.cn/EN/Y2020/V56/I5/715

Fig.1  XRD spectra of as-cast Fe-15Mn-5Si-14Cr-0.2C sample and fractured sample after loading
Fig.2  Engineering stress-strain curve of as-cast Fe-15Mn-5Si-14Cr-0.2C sample at room temperature
Fig.3  EBSD images of as-cast Fe-15Mn-5Si-14Cr-0.2C sample in edge zone (a), center zone (b) and fractured sample after loading (c)
Fig.4  Potentiodynamic polarization curves of Fe-15Mn-5Si-14Cr-0.2C alloy and 304 stainless steel in artificial seawater at 298 K (i—current density)

Alloy

Ecorr

mV

icorr

μA·cm-2

Rp

106 Ω·cm2

Epit

mV

Epit-Ecorr

mV

304 stainless steel-263.431.5822.2384.93648.41
Fe-15Mn-5Si-14Cr-0.2C-211.850.4908.9598.58810.43
Table 1  Corrosion parameters of Fe-15Mn-5Si-14Cr-0.2C alloy and 304 stainless steel in artificial seawater at 298 K
Fig.5  AC impedance diagrams of Fe-15Mn-5Si-14Cr-0.2C alloy and 304 stainless steel in artificial seawater at 298 K (Zim—imaginative part of impedance, Zre—real part of impedance)
Fig.6  SEM images of Fe-15Mn-5Si-14Cr-0.2C alloy after electrochemical corrosion at margin (a) and center (b) areas
AreaFeMnSiCrC
Margin56.547.3215.496.1514.50
Center58.8011.606.588.2714.75
Table 2  EDS analyses of Fe-15Mn-5Si-14Cr-0.2C alloy after electrochemical corrosion at margin and center areas
Fig.7  SEM-BS image of Fe-15Mn-5Si-14Cr-0.2C after electrochemical corrosion
1 Inoue A. High strength bulk amorphous alloys with low critical cooling rates (Overview) [J]. Mater. Trans., 1995, 36: 866
2 Hofmann D C. Shape memory bulk metallic glass composites [J]. Science, 2010, 329: 1294
doi: 10.1126/science.1193522 pmid: 20829474
3 Qiao J C, Wang Q, Pelletier J M, et al. Structural heterogeneities and mechanical behavior of amorphous alloys [J]. Prog. Mater. Sci., 2019, 104: 250
4 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33(5): 177
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177
5 Pan J, Zhang M, Chen Q, et al. Study of anticorrosion ability of Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9 bulk metallic glass in strong acid solutions [J]. Rare Met. Mater. Eng., 2008, 37: 805
潘 杰, 张 猛, 谌 祺等. FeCoCrMoCBY块体非晶合金在强酸介质中的耐蚀性能 [J]. 稀有金属材料与工程, 2008, 37: 805
6 Fan H B, Zheng W, Wang G Y, et al. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions [J]. Metall. Mater. Trans., 2011, 42A: 1524
7 Gostin P F, Gebert A, Schultz L. Comparison of the corrosion of bulk amorphous steel with conventional steel [J]. Corros. Sci., 2010, 52: 273
8 Naka M, Hashimoto K, Inoue A, et al. Corrosion-resistant amorphous Fe-C alloys containing chromium and/or molybdenum [J]. J. Non-Cryst. Solids, 1979, 31: 347
9 Jayaraj J, Kim K B, Ahn H S, et al. Corrosion mechanism of N-containing Fe-Cr-Mo-Y-C-B bulk amorphous alloys in highly concentrated HCl solution [J]. Mater. Sci. Eng., 2007, A449-451: 517
10 Pardo A, Merino M C, Otero E, et al. Influence of Cr additions on corrosion resistance of Fe- and Co-based metallic glasses and nanocrystals in H2SO4 [J]. J. Non-Cryst. Solids, 2006, 352: 3179
11 Chen J, Wang J Z, Chen B B, et al. Tribocorrosion behaviors of Inconel 625 alloy sliding against 316 steel in seawater [J]. Tribol. Trans., 2010, 54: 514
12 Hu X F, Jiang H C, Zhao M J, et al. Microstructure and mechanical properties of welded joint of a Fe-Cr-Ni-Mo steel with high-strength and high-toughness [J]. Acta Metall. Sin., 2018, 54: 1
胡小锋, 姜海昌, 赵明久等. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能 [J]. 金属学报, 2018, 54: 1
13 Hakiki N B, Boudin S, Rondot B, et al. The electronic structure of passive films formed on stainless steels [J]. Corros. Sci., 1995, 37: 1809
14 Zhi J H, Wang Y, Li J H, et al. Microsturcture and high temperature mechanical properties of martensitic stainless steel [J]. Heat Treat. Met., 2018, 43(3): 68
支金花, 王 裕, 李继红等. 1Cr12Ni2W1MolV马氏体不锈钢的组织和高温力学性能 [J]. 金属热处理, 2018, 43(3): 68
15 Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 99
曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 99
16 Stern M, Geary A L. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
17 Li J W, Yang L J, Ma H R, et al. Improved corrosion resistance of novel Fe-based amorphous alloys [J]. Mater. Des., 2016, 95: 225
doi: 10.1016/j.actbio.2016.03.047 pmid: 27045349
18 Hua N B, Chen W Z, Wang Q T, et al. Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications [J]. J. Alloys Compd., 2018, 745: 111
19 Wen P, Li C F, Zhao Y, et al. First principles calculation of occupancy, bonding characteristics and alloying effect of Cr, Mo, Ni in bulk α-Fe(C) [J]. Acta Phys. Sin., 2014, 63(19): 197101
文 平, 李春福, 赵 毅等. Cr, Mo, Ni在α-Fe(C)中占位、键合性质及合金化效应的第一性原理研究 [J]. 物理学报, 2014, 63(19):197101
20 Li L, Xing S B. Catalytic effect analysis of metallic catalyst during diamond single crystal synjournal [J]. Acta Metall. Sin. (Engl. Lett)., 2014, 27: 161
21 Wang Y F, Li Y K, Sun C, et al. Electronic theoretical model of static and dynamic strength of steels [J]. Acta Phys. Sin., 2014, 63(12): 126101
王云飞, 李云凯, 孙 川等. 钢动静态强度计算的电子理论模型 [J]. 物理学报, 2014, 63(12): 126101
22 Wang Y, Li C F, Lin Y H. Electronic theoretical study of the influence of Cr on corrosion resistance of Fe-Cr Alloy [J]. Acta Metall. Sin., 2017, 53: 622
王 垚, 李春福, 林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究 [J]. 金属学报, 2017, 53: 622
23 Souza C A C, Ribeiro D V, Kiminami C S. Corrosion resistance of Fe-Cr-based amorphous alloys: An overview [J]. J. Non-Cryst. Solids, 2016, 442: 56
24 Huang C B, Lu Z P, Yang W. Anodic dissolution and passiyation of an Fe-Ni base alloy in hot concentrated caustic solutions [J]. Corros. Sci. Pro. Technol., 2001, 13(Suppl.): 514
黄春波, 吕战鹏, 杨 武. Fe-Ni基合金在热浓碱溶液中的阳极溶解与钝化行为 [J]. 腐蚀科学与防护技术, 2001, 13(增刊): 514
25 Chen P, Qin F X, Zhang H F, et al. Corrosion behaviors of bulk amorphous alloy Cu-Zr-Ti-Sn and its crystallized form in 3.5% NaCl solution [J]. Acta Metall. Sin., 2004, 40: 207
陈 鹏, 秦凤香, 张海峰等. 块状非晶合金Cu-Zr-Ti-Sn在3.5%NaCl溶液中的腐蚀行为 [J]. 金属学报, 2004, 40: 207
26 Hu Y P, Ping K B, Yan Z J, et al. First-principles calculations of structure and magnetic properties of α-Fe(Si) phase precipitated in the Finemet alloy [J]. Acta Phys. Sin., 2011, 60(10): 107504
胡玉平, 平凯斌, 闫志杰等. Finemet合金析出相α-Fe(Si)结构与磁性的第一性原理计算 [J]. 物理学报, 2011, 60(10): 107504
27 Han Y, Kong F L, Han F F, et al. New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application [J]. Intermetallics, 2016, 76: 18
28 Machmeier P, Matuszewski T, Jones R, et al. Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I [J]. J. Mater. Eng. Perform., 1997, 6: 279
29 Botta W J, Berger J E, Kiminami C S, et al. Corrosion resistance of Fe-based amorphous alloys [J]. J. Alloys Compd., 2014, 586(Suppl. 1): S105
30 Qu S P, Cheng B Z, Dong L H, et al. Corrosion behavior of 2205 steel in simulated hydrothermal area [J]. Acta Metall. Sin., 2018, 54: 1094
屈少鹏, 程柏璋, 董丽华等. 2205钢在模拟深海热液区中的腐蚀行为 [J]. 金属学报, 2018, 54: 1094
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!