Ultra-high strength steels have been widely used in the critical engineering structures in both military and civilian applications due to the combination of ultra-high strength and excellent toughness. In this paper, firstly, the typical ultra-high strength steel grades that have been employed were introduced, and their compositions, mechanical properties, application and histories of development were summarized with the emphasis on their microstructures and strengthening/toughening mechanism; secondly, the latest progress on the emerging ultra-high strength steel grades was reviewed, including their compositions, microstructures, strengthening mechanism and mechanical properties; thirdly, the newly emerging demands on replacing the currently employed ultra-high strength steels in China were defined, including steels for low-density but ultra-strong armors, the large ball grinding mill, cutters of tunnel boring machine and high pressure fracturing pump; finally, recent research results on ultra-high strength and high-toughness medium Mn steel were presented, which overcame the trade-off of strength and toughness to a greater extent; on this basis, some suggestions were put forward for the future development of these steel grades to meet the urgent national demands.
Fig.3 TEM images of the surface layers of carburized 20CrMnMoAl steel austempered at 220 ℃ for 32 h (a) and 250 ℃ for 20 h (b)[66]
Fig.4 The engineering stress-strain curves for deformed and partitioned (Q&P) steels with high dislocation density[72]
Fig.5 Schematics of the interaction mechanism between the second phase particles and dislocation(a) looping mechanism (b) cutting mechanism
Steel
Composition (mass fraction / %)
Precipitation
Ref.
Cu
Ni
Mn
Al
Ti
Co
Mo
Cr
V
W
Nb
Si
B
C
Fe
13Cr13CoNiMoTi
-
4.6
-
0.2
0.38
13
3.4
13.2
-
-
-
-
-
0.003
Bal.
Ni3(Ti, Al)+R'+α'
[61]
5Ni2Al3Mn1.5Cu
1.5
5
3
2
-
-
1.5
-
-
1.5
0.07
-
0.01
0.05
Bal.
NiAl+Cu
[74]
4Cu4Ni4MnAl
4
4
4
1
-
-
-
-
-
-
0.07
0.48
-
0.05
Bal.
Cu+NiAl
[75]
MA_H_Al
-
3
11.8
1.3
-
-
-
-
-
-
-
-
-
0.158
Bal.
NiMn+Ni2AlMn
[76]
18Ni8Al2Ti12Cr
-
18
-
8.1
2.0
-
1.9
12.2
-
-
-
-
-
-
Bal.
NiAl+Ni2TiAl
[77]
7Ni10Cr8Co2Al
-
7.0
-
1.8
-
8.0
2.75
9.9
-
2.43
-
-
-
-
Bal.
Laves+NiAl
[78]
12Cr4Ni2Cu2Co
2.2
4.1
0.61
0.03
0.53
2.1
0.51
12.0
0.005
-
0.11
0.57
-
0.09
Bal.
Cu+MC+Ni3Ti
[79]
9Ni12CrAlTi
-
9.05
-
0.7
0.35
-
2.0
12.1
-
-
-
0.05
-
-
Bal.
NiAl+Ni3(Ti, Al)
[80]
Table 6 Compositions and co-precipitations of ultra-high strength steels[61,74,75,76,77,78,79,80]
Fig.6 Schematics of co-precipitation of nanoparticles in ultra-high strength high-toughness steels(a) precipitation sequence of nanoparticles in Fe-Cu-Ni-Al steelColor online(b) precipitation sequence of nanoparticles in Fe-Al-Cr-Ni-Ti steel
Steel
Composition (mass fraction / %)
YS
MPa
UTS
MPa
EL
%
Hardness
HB
Ak (20 ℃)
J
Ref.
C
Mn
Si
Cr
Ni
Mo
Other
Fe
Armox 440T
0.21
1.2
0.5
1.0
2.5
0.7
0.005B
Bal.
1100
1500
10
420~480
45 (-40 ℃)
[91]
Armox 500T
0.32
1.2
0.27
1.0
1.8
0.7
0.005B
Bal.
1250
1600
8
480~540
32 (-40 ℃)
[91]
Armox 600T
0.47
1.0
0.4
1.5
3.0
0.7
0.003B
Bal.
-
2000
7
570~640
12 (-40 ℃)
[91]
MIL-A46100
0.28
0.9
0.53
0.3
0.19
0.24
0.03Ti+0.18Cu
Bal.
1050
1750
12
480~540
25 (-40 ℃)
[92]
UHT 440
0.25
1.4
0.6
1.2
0.5
0.35
0.002B
Bal.
1150
1450
14
420~480
16 (-40 ℃)
[93]
HHA 500
0.32
0.8
0.5
1.2
0.5
0.3
0.002B
Bal.
1350
1640
14
477~534
16 (-40 ℃)
[93]
Table 7 Compositions and properties of typical ultra-high strength armor steels[91,92,93]
Steel
Composition (mass fraction / %)
YS
MPa
UTS
MPa
EL
%
Hardness
HB
Ak (20 ℃)
J
Ref.
C
Mn
Si
Cr
Ni
Mo
Other
Fe
Mn14Cr
1.27
14
0.5
1.7
-
-
-
Bal.
500
-
50
200~230
176
[94]
400V
0.2
1.8
0.5
1.5
0.8
0.5
0.05Nb
Bal.
1000
1300
12
380~420
30 (-40 ℃)
[95]
500V
0.3
1.6
0.5
1.5
1.0
0.5
0.05Nb
Bal.
1300
1650
8
470~530
25 (-25 ℃)
[95]
JEFEH360A
0.20
1.6
0.6
0.8
-
0.3
0.003B
Bal.
1147
1203
23.9
388
156
[96]
JEFEH500A
0.35
1.6
0.6
0.8
-
0.3
0.003B
Bal.
1321
1516
22.9
543
65
[96]
WNM360
0.20
1.6
0.6
1.4
1.0
0.5
0.004B
Bal.
-
1290
13
362~379
58 (-20 ℃)
[96]
Cr26
2.7
0.8
0.7
26
1.5
1.0
0.7RE
Bal.
-
-
-
654
10
[97]
Table 8 Compositions and properties of the liner steels in semi-autogenous mill[94,95,96,97]
Steel
Composition (mass fraction / %)
Hardness
HB
Ak (20 ℃)
J
C
Mn
Si
Cr
Ni
Mo
V
Other
Fe
HH301
0.4
0.65
1.0
5.32
-
1.5
1.0
0.05Nb+0.11Al
Bal.
654
18
Wirth
0.51
0.27
0.94
4.95
-
1.41
0.8
-
Bal.
595
11.1
6422 Steel
0.39
0.69
0.21
0.82
1.46
0.26
0.006
0.21Al+0.18Cu
Bal.
654
1.96
DQ Steel
0.51
0.27
0.94
4.95
-
1.41
0.8
-
Bal.
615
-
SL steel
0.35
0.75
0.4
1.2
4.0
0.45
-
0.05Al
Bal.
654
15
H13
0.4
0.35
1.0
5.0
-
1.5
1.0
-
Bal.
615
11
Table 9 Compositions and properties of the shield cutter steels[99]
Steel
Composition (mass fraction / %)
YS
MPa
UTS
MPa
EL
%
Hardness
HB
Ak (20 ℃)
J
Ref.
C
Mn
Si
Cr
Ni
Mo
V
Fe
4330V
0.30
0.8
0.2
0.9
1.8
0.45
0.1
Bal.
1100
1180
16
360
70
[102,103]
42CrMo
0.43
0.8
0.3
1.2
-
0.22
-
Bal.
1045
1145
-
-
69
[104]
43CrNi2MoV
0.43
-
0.3
1.0
1.6
0.33
0.13
Bal.
972
1070
16.5
311~336
79
[105]
Table 10 Compositions and properties of the fracturing pump fluid end steels[102,103,104,105]
Fig.7 Engineering stress-strain curves of different steels(a) 9Mn, 9Mn-V, 9Mn-V-Nb hot-rolled steels[106](b) 10Mn-V steel warm rolled at different temperatures and reductions[107]
Fig.8 Engineering stress-strain curves (a), cold bending picture (b) and bulletproof test picture (c) of 7Mn steel (HR—hot rolled)
Fig.9 UTS and impact toughness of typical ultra-high strength steel grades compared with developed medium Mn steel (7Mn)[20,21,22,23,24,27,28,36,37,38,39,40,42,43,44,45,46,89,90,108]
[1]
Wan X R, Xu C G. The High and Ultrahigh Strength Steels [M]. Beijing: China Machine Press, 1988: 2
[1]
万翛如, 许昌淦. 高强度及超高强度钢 [M]. 北京: 机械工业出版社, 1988: 2
[2]
Czyryca E J. Advances in high strength steel technology for naval hull construction [J]. Key Eng. Mater., 1993, 84-85: 491
[3]
Pellissier G E. Effects of microstructure on the fracture toughness of ultrahigh-strength steels [J]. Eng. Fract. Mech., 1968, 1: 55
[4]
https://mp.weixin.qq.com/s/XVFi_UkiSzoZ88JE4DcTbQ
[5]
Jahazi M. The influence of thermomechanical treatment on the microstructure and mechanical properties of aisi 4130 steel [J]. Metall. Mater., 1998, 4: 818
[6]
Youngblood J L, Raghavan M. Correlation of microstructure with mechanical properties of 300M steel [J]. Metall. Trans., 1977, 8A: 1439
[7]
Zhang K M, Zou J X, Grosdidier T, et al. Microstructure and property modifications of an AISI H13 (4Cr5MoSiV) steel induced by pulsed electron beam treatment [J]. J. Vac. Sci. Technol., 2010, 28A: 1349
[8]
Grujicic M. Coherent precipitation of M2C carbides in AF1410 steel [J]. Mater. Sci. Eng., 1989, A117: 215
[9]
Tewari R, Mazumder S, Batra I S, et al. Precipitation in 18 wt% Ni maraging steel of grade 350 [J]. Acta Mater., 2000, 48: 1187
[10]
Liu P, Stigenberg A H, Nilsson J O. Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel [J]. Acta Metall. Mater., 1995, 43: 2881
[11]
Etemad M R, Turner C E. An experimental investigation of slow stable crack growth using HY130 steel [J]. J. Strain Anal. Eng. Des., 1985, 20: 201
[12]
Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
Saeidi N, Ekrami A. Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels [J]. Mater. Sci. Eng., 2009, A523: 125
[14]
Lee W S, Su T T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions [J]. J. Mater. Process. Technol., 1999, 87: 198
[15]
Fan C G, Dong H, Shi J, et al. Microstructure and mechanical properties of 2200 MPa grade ultra-high strength low alloy steels [J]. Ordn. Mater. Sci. Eng., 2006, 29(2): 31
Caballero F G, Santofimia M J, García-Mateo C, et al. Theoretical design and advanced microstructure in super high strength steels [J]. Mater. Des., 2009, 30: 2077
[17]
Borgioli F, Galvanetto E, Fossati A, et al. Glow-discharge nitriding and post-oxidising treatments of AISI H11 steel [J]. Surf. Coat. Technol., 2003, 162: 61
[18]
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
[19]
Ayer R, Machmeier P M. Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels [J]. Metall. Mater. Trans., 1996, 27A: 2510
[20]
Manigandan K, Srivatsan T S, Tammana D, et al. Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100 [J]. Mater. Sci. Eng., 2014, A601: 29
[21]
Luo H, Yin Z D, Zhu J C, et al. Influence of grain size on mechanical properties of 18Ni maraging steel [J]. Mater. Sci. Technol., 2000, 8(1): 59
Kim Y G, Kim G S, Chang S L, et al. Microstructure and mechanical properties of a cobalt-free tungsten-bearing maraging steel [J]. Mater. Sci. Eng., 1986, 79: 133
[24]
Ren H L, He Z J, Wang X C, et al. Cobalt-free maraging alloy [J]. J. Univ. Sci. Technol. Beijing, 1987, 9(4): 31
Kuehmann C, Tufts B, Trester P. Computational design for ultra high-strength alloy [J]. Adv. Mater. Proc., 2008, 166: 37
[29]
Nunes M M, Da Silva E M, Renzetti R A, et al. Analysis of quenching parameters in AISI 4340 steel by using design of experiments [J]. Mater. Res., 2019, 22: e20180315
[30]
Zhao L X, Zheng D W, Zheng L Y, et al. Novel water-air circulation time controlled quenching process for AISI4140 steel [J]. Hot Working Technol., 2013, 42(14): 169
Saeidi N, Ekrami A. Microstructure-toughness relationship in AISI4340 steel [J]. Defect Diffus. Forum, 2011, 312-315: 110
[32]
Jahazi M, Egbali B. The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel [J]. J. Mater. Process. Technol., 2000, 103: 276
[33]
Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures [J]. Metall. Mater. Trans., 2001, 32B: 205
[34]
Chang L, Smith G D W. The silicon effect in the tempering of martensite in steels [J]. J. Phys. Colloques, 1984, 45: C9-397-C9-401
[35]
Sun M, Xiao K, Dong C F, et al. Electrochemical corrosion behavior of 300M ultra high strength steel in chloride containing environment [J]. Acta Metall. Sin. (Engl. Lett., 2010, 23: 301
[36]
Liu F G, Lin X, Song M H, et al. Effect of tempering temperature on microstructure and mechanical properties of laser solid formed 300M steel [J]. J. Alloys Compd., 2016, 689: 225
[37]
Liu X M, Hua F, Liu R, et al. Effect of heat treatment on the mechanical properties of steel 30CrMnSiNi2A [J]. Iron Steel, 2003, 38(1): 43
Wang W M, Wang S Q, Liu X M. Effect of heat treatment processes on the property and microstructure of ultra-high strength steel 45CrNiMo1VA [J]. Iron Steel, 1995, 30(11): 48
Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410 [J]. Metall. Trans., 1989, 20A: 105
[44]
Wan X R. Development of advanced highly alloy of secondary hardening ultrahigh-strength steels [J]. J. Mater. Eng., 1994, (11): 1
[44]
万翛如. 新型高合金二次硬化超高强度钢的发展 [J]. 材料工程, 1994, (11): 1
[45]
Xie J P, Cao F Y, Wang M H, et al. Effects of heat treatment on microstructure and properties of spray-formed H13 steel [J]. J. Henan Univ. Sci. Technol. (Nat. Sci.), 2016, 37(5): 1
Zhao L, Liu X M, Yong Q L, et al. Effect of heat treatment on structure and properties of low alloying ultra-high strength steel DT300 [J]. Spec. Steel, 2007, 28(2): 29
Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50: 447
Morikawa H, Komatsu H, Tanino M. Effect of chromium upon coherency between M2C precipitates and α-iron matrix in 0.1C-10Ni-8Co-lMo-Cr steels [J]. J. Electron Microsc., 1973, 22: 99
[49]
Speich G R, Dabkowski D S, Porter L F. Strength and toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co [J]. Metall. Trans., 1973, 4: 303
[50]
Soto K. Improving the toughness of ultrahigh strength steel [D]. Berkeley: University of California, 2002
[51]
Wang Z H, Wang H M, Liu D. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique [J]. Chin. J. Lasers, 2016, 43(4): 0403001
Duan Q Q, Wang B, Zhang P, et al. Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening [J]. J. Mater. Res., 2017, 32: 4424
[55]
He Y, Yang K, Kong F Y, et al. Mechanical properties of ultra-high-strength 18Ni cobalt-free maraging steel [J]. Acta Metall. Sin., 2002, 38: 278
Yang W Y. Investigation on strength-toughness mechanism of low nickel, cobalt free maraging steel [D]. Taiyuan: North University of China, 2009
[56]
杨维宇. 低Ni无Co马氏体时效钢强韧化研究 [D]. 太原: 中北大学, 2009
[57]
Xiang S, Wang J P, Sun Y L, et al. Effect of ageing process on mechanical properties of martensite precipitation-hardening stainless steel [J]. Adv. Mater. Res., 2010, 146-147: 382
[58]
Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Mater. Sci. Eng., 2002, A338: 142
[59]
Hochanadel P W, Edwards G R, Robino C V, et al. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure [J]. Metall. Mater. Trans., 1994, 25A: 789
[60]
Li N, Chen J Y, Long J M. Strengthening characteristic and optimization of heat treatment for Custom465 maraging stainless steel [J]. Phys. Exam. Test., 2005, 23(6): 4
Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56
[62]
Tian J L, Wang W, Babar Shahzad M, et al. A New maraging stainless steel with excellent strength-toughness-corrosion synergy [J]. Materials, 2017, 10: 1293
[63]
Jiao Z B, Liu C T. Ultrahigh-strength steels strengthened by nanoparticles [J]. Sci. Bull., 2017, 62: 1043
[64]
Bhadeshia H K D H, Edmonds D V. The bainite transformation in a silicon steel [J]. Metall. Trans., 1979, 10A: 895
[65]
Hodgson P D, Timokhina I, Xiong X Y, et al. Understanding of the bainite transformation in a Nano-structured bainitic steel [J]. Solid State Phenom., 2011, 172-174: 123
[66]
Zhang P, Zhang F C, Wang T S. Preparation and microstructure of hard bainite in surface layer of carburized 20CrMnMoAl steel [J]. Acta Metall. Sin., 2011, 47: 1038
Gong W, Tomota Y, Koo M S, et al. Effect of ausforming on nanobainite steel [J]. Scr. Mater., 2010, 63: 819
[69]
Jin X J, Min N, Zheng K Y, et al. The effect of austenite deformation on bainite formation in an alloyed eutectoid steel [J]. Mater. Sci. Eng., 2006, A438-440: 170
[70]
Chiou C S, Yang J R, Huang C Y. The effect of prior compressive deformation of austenite on toughness property in an ultra-low carbon bainitic steel [J]. Mater. Chem. Phys., 2001, 69: 113
[71]
Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. Roy. Soc., 1934, 145A: 362
[72]
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
[73]
Schnitzer R, Schober M, Zinner S, et al. Effect of Cu on the evolution of precipitation in an Fe-Cr-Ni-Al-Ti maraging steel [J]. Acta Mater., 2010, 58: 3733
[74]
Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles [J]. Acta Mater., 2015, 97: 58
[75]
Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel [J]. Acta Mater., 2014, 73: 56
[76]
Millán J, Sandl?bes S, Al-Zubi A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels [J]. Acta Mater., 2014, 76: 94
[77]
Liebscher C H, Radmilovi? V R, Dahmen U, et al. A hierarchical microstructure due to chemical ordering in the bcc lattice: Early stages of formation in a ferritic Fe-Al-Cr-Ni-Ti alloy [J]. Acta Mater., 2015, 92: 220
[78]
Sun L, Simm T H, Martin T L, et al. A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates [J]. Acta Mater., 2018, 149: 285
[79]
Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, et al. A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates [J]. Acta Mater., 2010, 58: 4067
[80]
Leitner H, Schober M, Schnitzer R. Splitting phenomenon in the precipitation evolution in an Fe-Ni-Al-Ti-Cr stainless steel [J]. Acta Mater., 2010, 58: 1261
[81]
Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel [J]. Metall. Mater. Trans., 1996, 27A: 3466
[82]
Briant C L, Banerji S K. Intergranularfailure in steel: The role of grain-boundary composition [J]. Int. Met. Rev., 1978, 23: 164
[83]
Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
[84]
Saha A, Olson G B. Computer-aided design of transformation toughened blast resistant naval hull steels: Part I [J]. J. Comput. Aided Mater. Des., 2007, 14: 177
[85]
Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel [J]. Acta Mater., 2018, 146: 126
[86]
Raabe D, Ponge D, Dmitrieva O, et al. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility [J]. Scr. Mater., 2009, 60: 1141
[87]
Li H Y, Lu X W, Li W J, et al. Microstructure and mechanical properties of an ultrahigh-strength 40SiMnNiCr steel during the one-step quenching and partitioning process [J]. Metall. Mater. Trans., 2010, 41A: 1284
[88]
Wang X D, Zhong N, Rong Y H, et al. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process [J]. J. Mater. Res., 2009, 24: 260
[89]
Qin S W, Liu Y, Hao Q G, et al. High carbon microalloyed martensitic steel with ultrahigh strength-ductility [J]. Mater. Sci. Eng., 2016, A663: 151
[90]
Gao G H, Zhang H, Gui X L, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: The great potential of ultrafine filmy retained austenite [J]. Acta Mater., 2014, 76: 425
[91]
https://www.ssab.cn/products/brands/armox
[92]
Grujicic M, Arakere A, Ramaswami S, et al. Gas metal arc welding process modeling and prediction of weld microstructure in MIL A46100 armor-grade martensitic steel [J]. J. Mater. Eng. Perform., 2013, 22: 1541
El-Mahallawi I, Abdel-Karim R, Naguib A. Evaluation of effect of chromium on wear performance of high manganese steel [J]. Mater. Sci. Technol., 2001, 17: 1385
[95]
Luo L J. Overview of high strength wear resistant steel production abroad [J]. Wide Heavy Plate, 2008, 14(3): 46
[95]
罗丽军. 国外高强度耐磨钢生产概述 [J]. 宽厚板, 2008, 14(3): 46
[96]
Wang J. Study on impact abrasive wear performance of high strength toughness wea-resistant steel plate [D]. Kunming: Kunming University of Science and Technology, 2017
[96]
王 军. 高强高韧性耐磨钢板的冲击磨料磨损性能研究 [D]. 昆明: 昆明理工大学, 2017
[97]
Mao S L, Shui H Y, Chen S S, et al. Microstructures and properties of Cr26 high chromium cast iron and its heat treatment [J]. Foundry Technol., 2011, 32: 1230
Yang M, Cui M, Li Z Y, et al. Effect of tempering temperature on microstructure and mechanical properties of 42CrMo steel [J]. Modern Metall., 2019, 47(1): 4
Hua Y C, Zhao J Y, Su M R. Experimental study of fatigue fracture of fracturing pump box steel 43CrNi2MoV [J]. J. Southwest Pet. Inst., 1992, 14(4): 74
Zhu Y S, Hu B, Luo H W. Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels [J]. Steel Res. Int., 2018, 89: 1700389
[107]
Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
[108]
Avishan B, Yazdani S, Caballero F G, et al. Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels [J]. Mater. Sci. Technol., 2015, 31: 1508