Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 513-522    DOI: 10.11900/0412.1961.2019.00361
Current Issue | Archive | Adv Search |
Current Status of Metallurgical Quality and Fatigue Performance of Rolling Bearing Steel and Development Direction of High-End Bearing Steel
YU Feng1,2,CHEN Xingpin1,XU Haifeng2,DONG Han3,WENG Yuqing2,CAO Wenquan2()
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
3.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Cite this article: 

YU Feng,CHEN Xingpin,XU Haifeng,DONG Han,WENG Yuqing,CAO Wenquan. Current Status of Metallurgical Quality and Fatigue Performance of Rolling Bearing Steel and Development Direction of High-End Bearing Steel. Acta Metall Sin, 2020, 56(4): 513-522.

Download:  HTML  PDF(14445KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper reviewed the development history of the first generation bearing steel GCr15, the second generation bearing steels M50 and M50NiL, and the third generation bearing steels Cronidur30 and CSS-42L. The fourth generation bearing alloy characterized by light weight is put forward. Based on the analysis of metallurgical quality and fatigue properties of traditional bearing steel, the direction of metallurgical quality control of bearing steel with fine quality and homogenization of large particle inclusions and carbide was proposed, and the contact fatigue control mechanism of bearing steel and two different anti-fatigue mechanisms of carbide control were revealed. According to the latest development of quality control technology and quantitative characterization technology for traditional bearing steel GCr15, the development direction of quality control for high-end bearing steel is proposed. Through the research on the overall heat treatment technology and surface carburizing technology of superfine matrix and carbide of bearing steel GCr15 and CSS-42L steel, the double heat treatment and surface superhardening heat treatment are innovatively developed, which can increase the contact fatigue life of bearing steel GCr15 at room temperature to 5 times and more than 10 times, respectively. Finally, it is pointed out that the application of quantitative inspection and testing technology is an important guarantee for high-performance bearing steel with good metallurgical quality and high performance.

Key words:  rolling bearing steel      metallurgical quality      fatigue performance      high-end bearing steel      development direction     
Received:  29 October 2019     
ZTFLH:  TG142.7  
Fund: National Key Research and Development Program of China(2016YFB0300101)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00361     OR     https://www.ams.org.cn/EN/Y2020/V56/I4/513

GenerationCharacteristicsThe main materialThe main performance
The firstNormal temperature (≤150 ℃)GCr15High hardness, wear resistance
9Cr18(Mo)High hardness, corrosion resistance
G20CrNi2MoImpact resistance
42CrMo, G55MnBoth strength and toughness
The secondElevated temperature (≤350 ℃)8Cr4Mo4VHigh hardness, high wear resistance,
temperature resistance
G115Cr14Mo4VHigh hardness, temperature resistance,
corrosion resistance
G13Cr4Mo4Ni4VTemperature resistance, impact resistance
The thirdElevated temperature and corrosionG13Cr14Co12Mo5Ni2High strength and toughness,
resistance (350~500 ℃)high temperature resistance,
corrosion resistance
G30Cr15MoNHigh hardness, high corrosion resistant
The fourthLight weight material60NiTi, GCr15AlLow density, temperature resistance,
density ρ≤6.7 g·cm-3high corrosion resistance
Table 1  The main steel grades of bearing steels
Fig.1  Carbide microstructure of the carburizing layer (a) and gradient distribution of hardness (b) of G13Cr14Co12Mo5Ni2 steel
Fig.2  SEM images of G30Cr15MoN (a) and 440C (b) stainless bearing steels
ProcessL10L50b
107 cyc107 cyc
BOF+LF+RH1.073.341.66
Argon shield atmosphere ESR3.5611.921.56
VIM+VAR5.4716.371.72
Table 2  Contact fatigue properties of GCr15 by different processes
Fig.3  Cast microstructures of 8Cr4Mo4V steel produced by electroslag remelting continuous directional solidification (ESR-CDS) (a) and VIM+VAR (b) processes
Fig.4  Carbides of 9Cr18Mo steel produced by ESR-CDS (a) and ESR (b) processes
Fig.5  Effect of new heat treatment on microstructure refinement of M50 bearing steel(a) coarse microstructure before new heat treatment(b) homogenized and refined microstructure after new heat treatment
Fig.6  Single quenched (SQ) microstructure (a) and refined microstructure processed by double quenching (DQ) (b) of GCr15 steel
Fig.7  Influence of heat treatments on contact fatigue life of bearing steel GCr15 by DQ (a) and special heat (SH) (b) treatments
Fig.8  Non-metallic inclusion detection technology
Fig.9  Distribution of inclusions detected by ASPEX automatic inclusion analyzer
Fig.10  Schematics of flat-washer (a) and ball-on-rod (b) RCF rigs (RCF—rolling contact fatigue)
[1] Zhong S S, Wang C S. Bearing Steel [M]. Beijing: Metallurgical Industry Press, 2000: 10
[1] 钟顺思, 王昌生. 轴承钢 [M]. 北京: 冶金工业出版社, 2000: 10
[2] Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad [J]. J. Iron Steel Res., 2016, 28(3): 1
[2] 李昭昆, 雷建中, 徐海峰等. 国内外轴承钢的现状与发展趋势 [J]. 钢铁研究学报, 2016, 28(3): 1
[3] Yang X W. Key technologies of high-end bearing manufacturing [J]. Met. Work., 2013, (16): 16
[3] 杨晓蔚. 高端轴承制造的关键技术 [J]. 金属加工(冷加工), 2013, (16): 16
[4] Tomasello C M, Maloney J L III. Aerospace bearing and gear alloys [J]. Adv. Mater. Process., 1998, 154: 58
[5] Burrier H I, Tomasello C M, Balliett S A, et al. Development of CSS-42LTM, a high performance carburizing stainless steel for high temperature aerospace applications [A]. Bearing Steels: Into the 21st Centry [C]. West Conshohocken, PA: ASTM International, 1998: 374
[6] Wang K, Yang M S, Fan G, et al. Investigation on mechanism of strength-toughening of heat and corrosion resistant bearing steel 16Cr14Co12Mo5 [J]. Iron Steel, 2011, 46(11): 75
[6] 王 康, 杨卯生, 樊 刚等. 16Cr14Co12Mo5耐热耐蚀轴承钢强韧化机制的研究 [J]. 钢铁, 2011, 46(11): 75
[7] Hou Z P, Zhang S, Zhang P, et al. High temperature creep damage behavior of a novel Cr-Co-Mo-Ni alloy [J]. J. Iron Steel Res., 2019, 31: 684
[7] 侯智鹏, 张 姝, 张 鹏等. 新型Cr-Co-Mo-Ni合金的高温蠕变损伤 [J]. 钢铁研究学报, 2019, 31: 684
[8] Trojahn W, Streit E, Chin H A, et al. Progress in bearing performance of advanced nitrogen alloyed stainless steel, Cronidur 30 [J]. Materialwiss. Werkstofftech., 1999, 30: 605
[9] El Mehtedi M, Ricci P, Drudi L, et al. Analysis of the effect of deep cryogenic treatment on the hardness and microstructure of X30 CrMoN 15 1 steel [J]. Mater. Des., 2012, 33: 136
[10] Xu H F, Cao W Q, Yu F, et al. Current research status and development of domestic and foreign high nitrogen martensitic stainless bearing steel [J]. Iron Steel, 2017, 52(1): 53
[10] 徐海峰, 曹文全, 俞 峰等. 国内外高氮马氏体不锈轴承钢研究现状与发展 [J]. 钢铁, 2017, 52(1): 53
[11] Feng H, Jiang Z H, Li H B, et al. Influence of austenitizing temperature on microstructure and mechanical properties of high nitrogen bearing steel 30Cr15Mo1N [J]. Iron Steel, 2017, 52(9): 92
[11] 冯 浩, 姜周华, 李花兵等. 淬火温度对30Cr15Mo1N高氮轴承钢组织和性能的影响 [J]. 钢铁, 2017, 52(9): 92
[12] Chen H, Zhou T P, Chen Z J, et al. Tempering temperature effect on microstructure and mechanical properties of 30Cr15Mo1N [J]. Iron Steel, 2019, 54(5): 60
[12] 陈 豪, 周天鹏, 陈泽军等. 回火温度对30Cr15Mo1N微观组织和力学性能影响 [J]. 钢铁, 2019, 54(5): 60
[13] Corte C D, Stanford M K, Jett T R. Rolling contact fatigue of superelastic intermetallic materials (SIM) for use as resilient corrosion resistant bearings [J]. Tribol. Lett., 2015, 57: 26
[14] Corte C D, Pepper S V, Noebe R, et al. Intermetallic nickel-titanium alloys for oil-lubricated bearing applications [R]. Cleveland, OH: NASA, 2009
[15] Zhang W L, Wang H, Xu H F, et al. Spheroidizing process of ultrahigh carbon steel with 2% aluminum addition [J]. Iron Steel, 2017, 52(12): 67
[15] 张万里, 王 辉, 徐海峰等. 2%铝质量分数超高碳钢的球化退火工艺 [J]. 钢铁, 2017, 52(12): 67
[16] Wang H, Chen Q M, Zhang W L, et al. Continuous cooling transformation of an ultrahigh carbon steel [J]. Heat Treat. Met., 2017, 42(11): 24
[16] 王 辉, 陈清明, 张万里等. 一种超高碳钢的连续冷却转变 [J]. 金属热处理, 2017, 42(11): 24
[17] Wang H, Chen Q M, Zhang W L, et al. Microstructure and hardness of a new ultra-high carbon steel with high Al addition after quenching and tempering [J]. Heat Treat. Met., 2017, 42(12): 66
[17] 王 辉, 陈清明, 张万里等. 一种新型高铝超高碳钢淬回火后的组织和硬度 [J]. 金属热处理, 2017, 42(12): 66
[18] Chen X P, Li W J, Ren P, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metall. Sin., 2019, 55: 951
[18] 陈兴品, 李文佳, 任 平等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响 [J]. 金属学报, 2019, 55: 951
[19] Liu L. Production technology for high quality special steel [J]. China Metall., 2011, 21(12): 11
[19] 刘 浏. 高品质特殊钢生产流程技术研究 [J]. 中国冶金, 2011, 21(12): 11
[20] Xu K D, Xiao L J, Gan Y, et al. Theory analysis on the new generation of clean steel production process [J]. Acta Metall. Sin., 2012, 48: 1
[20] 徐匡迪, 肖丽俊, 干 勇等. 新一代洁净钢生产流程的理论解析 [J]. 金属学报, 2012, 48: 1
[21] Uesugi T. Produetion of high-carbon chromium bearing steel in vertical type continuous caster [J]. Trans. Iron Steel Inst. Jpn., 1986, 26: 614
[22] Guetard G, Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50 [J]. Int. J. Fatigue, 2016, 91: 59
[23] Chen M, Zhai J L, Cai F W. The effect of controlled rolling and controlled cooling technology on network carbide in high carbon chromium bearing steel [J]. Spec. Steel Technol., 2015, 21(3): 17
[23] 陈 敏, 翟蛟龙, 蔡丰伟. 控轧控冷对高碳铬轴承钢网状碳化物改善的研究 [J]. 特钢技术, 2015, 21(3): 17
[24] Steels for bearing production from Ovako [Z]. Ovako, www.ovako.com, 2008
[25] Fu R, Feng D, Chen X C, et al. Research of ESR-CDS technology [J]. J. Iron Steel Res., 2011, 23(S2): 1
[25] 付 锐, 冯 涤, 陈希春等. 电渣重熔连续定向凝固技术研究 [J]. 钢铁研究学报, 2011, 23(增刊2): 1
[26] Zhan L C, Chi H X, Ma D S, et al. The as-cast microstructure of ESR-CDS M2 high speed steel [J]. J. Mater. Eng., 2013, (7): 29
[26] 占礼春, 迟宏霄, 马党参等. 电渣重熔连续定向凝固M2高速钢铸态组织的研究 [J]. 材料工程, 2013, (7): 29
[27] Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
[28] Xing P D, Wang Y H, Wang Z M, et al. Homogenizing rolling technology of GCr15 bearing steel based on non-uniform temperature field [J]. Iron Steel, 2017, 52(10): 59
[28] 邢鹏达, 王玉辉, 王志蒙等. 基于非均匀温度场的GCr15轴承钢均匀化轧制 [J]. 钢铁, 2017, 52(10): 59
[29] Lai D C, Yang M S, Leng C Y, et al. Fatigue properties of low-carbon CrNiMoV bearing steel modified by carburizing and nitriding [J]. Chin. J. Vac. Sci. Technol., 2016, 36: 784
[29] 赖大春, 杨卯生, 冷崇燕等. 基于化学热处理低碳CrNiMoV轴承钢疲劳性能的研究 [J]. 真空科学与技术学报, 2016, 36: 784
[30] Smoljan B. An analysis of combined cyclic heat treatment performance [J]. J. Mater. Proc. Technol., 2004, 155-156: 1704
[31] Cao W Q, Yu F, Xu D, et al. Double refinement heat treatment process for long-service-life high-carbon chromium bearing steel [P]. Chin Pat, 201811321639. 4, 2018
[31] 曹文全, 俞 峰, 许 达等. 一种高碳铬轴承钢长寿命双细化热处理工艺 [P]. 中国专利, 201811321639.4, 2018)
[32] Yang F L, Zhou W S, Cao W Q, et al. Effect of rapid cycling phase transformation on microstructure and properties of GCr15SiMn steel [J]. J. Iron Steel Res., 2015, 27(7): 68
[32] 杨方亮, 周旺松, 曹文全等. 快速循环相变对GCr15SiMn钢组织和性能的影响 [J]. 钢铁研究学报, 2015, 27(7): 68
[33] Cao Z X, Shi Z Y, Yu F, et al. Effects of double quenching on fatigue properties of high carbon bearing steel with extra-high purity [J]. Int. J. Fatigue, 2019, 128: 105176
[34] Cao W Q, Liu T Q, Xu H F, et al. A method for improving the contact fatigue life of high-carbon bearing steel [P]. Chin Pat, 201911033033.5, 2019
[34] 曹文全, 刘天琦, 徐海峰等. 一种提供碳轴承钢接触疲劳寿命的方法 [P]. 中国专利, 201911033033.5, 2019)
[35] Dodd A, Mitamura N, Kawamura H, et al. Bearings for aircraft gas turbine engines (part 2) [J]. Motion Control, 1999, (6): 1
[36] Cao Z X, Liu T Q, Yu F, et al. Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel [J]. Int. J. Fatigue, 2020, 131: 105351
[37] Ooi S, Bhadeshia H K D H. Duplex hardening of steels for aeroengine bearings [J]. ISIJ Int., 2012, 52: 1927
[38] Vander G V. Inclusion ratings: Past, present, and future [A]. Bearing Steels: into the 21st Century [C]. West Conshohocken, PA: ASTM International, 1998: 13
[39] Kato Y, Sato K, Hiraoka K, et al. Recent evaluation procedures of nonmetallic inclusions in bearing steels (Statistics of extreme value method and development of higher frequency ultrasonic testing method) [A]. Bearing Steel Technology [C]. West Conshohocken, PA: ASTM International, 2002: 176
[40] Cao Z X, Shi Z Y, Yu F, et al. A new proposed Weibull distribution of inclusion size and its correlation with rolling contact fatigue life of an extra clean bearing steel [J]. Int. J. Fatigue, 2019, 126: 1
[41] Tian C, Liu J H, Fan J W, et al. Evaluation of inclusions of ultra-low oxygen bearing steel by statistics of extreme values method [J]. J. Iron Steel Res., 2018, 30: 127
[41] 田 超, 刘剑辉, 范建文等. 采用统计极值法评价超低氧轴承钢夹杂物 [J]. 钢铁研究学报, 2018, 30: 127
[42] Shi Z Y, Xu H F, Xu D, et al. Characterization of inclusions in GCr15 bearing steel by ASPEX and rotary bending fatigue methods [J]. Iron Steel, 2019, 54(4): 55
[42] 史智越, 徐海峰, 许 达等. 采用ASPEX和旋弯疲劳法表征GCr15轴承钢夹杂物 [J]. 钢铁, 2019, 54(4): 55
[43] Li Y D, Yang Z G, Li S X, et al. Correlations between very high cycle fatigue properties and inclusions of GCr15 bearing steel [J]. Acta Metall. Sin., 2008, 44: 968
[43] 李永德, 杨振国, 李守新等. GCr15轴承钢超高周疲劳性能与夹杂物相关性 [J]. 金属学报, 2008, 44: 968
[44] Fu H W, Rydel J J, Gola A M, et al. The relationship between 100Cr6 steelmaking, inclusion microstructure and rolling contact fatigue performance [J]. Int. J. Fatigue, 2019, 129: 104899
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[6] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[7] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
[8] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[10] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[11] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
[12] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
[13] Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. 金属学报, 2018, 54(6): 877-885.
[14] Yongjin WANG, Renbo SONG, Renfeng SONG. Deformation Behavior and Microstructure Evolution of 9Cr18 Alloy During Semi-Solid Compression[J]. 金属学报, 2018, 54(1): 39-46.
[15] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
No Suggested Reading articles found!