Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (9): 1077-1094    DOI: 10.11900/0412.1961.2019.00122
Overview Current Issue | Archive | Adv Search |
Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys
ZHANG Jian(),WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys. Acta Metall Sin, 2019, 55(9): 1077-1094.

Download:  HTML  PDF(30808KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Single crystal superalloy is the key material used in the hot section of aeroengines and industry gas turbines. The research, development and application of these alloys is generally a mirror of the industry base of a country. The recent progress in research and development of single crystal superalloys is briefly reviewed in the present paper. Some new ideas in alloy development and the design methods are summarized. The deformation behaviors, damage and failure mechanisms of single crystal superalloys during creep, fatigue, oxidation and hot corrosion have been overviewed. The role of typical defects such as low angle grain boundary, recrystallization and micro-porosity is also discussed. The recent progress in the directional solidification processes and typical parameters of high rate solidification, gas cooling casting, liquid metal cooling and fluidized bed cooling are introduced. Fundamental correlations of processing parameters to defect formation and microstructure evolution during manufacture of single crystal blade is discussed. Additionally, the future opportunities and challenges are also explored.

Key words:  single crystal superalloy      alloy design      mechanical property      directional solidification      defect     
Received:  22 April 2019     
ZTFLH:  TG132.3  
Fund: Supported by National Key Research and Development Program of China(No.2017YFB0702904);National Natural Science Foundation of China(Nos.91860201、51631008、51871210、51771204、U1732131和51671196);National Science and Technology Major Projects(Nos.2017-VII-0008-0101、2017-VI-0001-0070和2017-VI-0003-0073)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00122     OR     https://www.ams.org.cn/EN/Y2019/V55/I9/1077

Fig.1  Creep rupture properties of Co-based alloys and the 1st generation Ni-based single crystal (SX) superalloys (T—temperature, K; t—time, h; P—Larson-Miller parameter)
Design method

Country

Key concept

Shortcoming

ADP

Japan

Computer regression processing based on a large number of experimentsThe relationship between alloy strength and elements was not established based on strengthening mechanism

ABD

England

Introduce some limiting parameters and filtering through big data computingThe element distribution and interface strengthening were not considered

MultOPT

Germany

Based on multi-standard optimization and semi-empirical modelThe precipitation?strengthening and interface strengthening were not considered in detail
Table 1  Design methods of single crystal superalloys
AlloysTest conditionCreep mechanisms at intermediate temperatureRef.

CMSX-4

1st generation SX alloy

750~850 ℃/450~750 MPa;

760 ℃/600, 700, 850 MPa

Different a/2<110> dislocations react at the interfaces of γ/γ'

a/2[011]+a/2[011]+a/2[1ˉ01]+a/2[1ˉ01]→a/3[112]+a/3[1ˉ12]+a/6[1ˉ12]+a/6[1ˉ12]a/3[1ˉ12] and a/6[1ˉ12] partial dislocations cut into γ' and leave a combination of SISF, SESF and APB

[33,34,38]

AM1, MC-NG, MC534, CMSX-10M, Rene N6

760 ℃/

840 MPa

a/2<110> dislocation cuts into γ' and results in a APB

[36]

SRR99

1st generation SX alloy

760 ℃/600, 780 MPa

760 ℃/600, 700, 850 MPa

a/2<110> dislocations dissociate at the interface:

a/2[1ˉ01]→a/3[1ˉ1ˉ2]+a/6[1ˉ21ˉ]

a/3<112> partial dislocations cut into γ' and leave a SISF or SESF a/6<112> partial dislocation would be left at the γ/γ' interfaces

[37,38]

Table 2  Creep mechanisms at intermediate temperature[33,34,36,37,38]
Fig.2  Creep rupture life of different single crystal superalloys
Fig.3  Rafted γ' (a) and dislocation networks (b) in a third generation single crystal superalloy DD33 creep ruptured at 1100 ℃ and 150 MPa[47]
Fig.4  Typical defects observed in single crystal blade including low angle grain boundary (LAGB) (a), sliver (b), spurious grains (c), freckle (d), shrinkage (e) and recrystallization (RX) (f)
AlloyTest conditionCreep life / hTest conditionCreep life / h
RR2072

950 ℃, 210 MPa

16

950 ℃, 290 MPa

14
RR2072-CB165~7772~150
RR2072-CB2175~190130~210
PWA1483

760 ℃, 414 MPa

38~97

982 ℃, 207 MPa

3.6
PWA1483-BHf>407830.4
Table 3  Effect of minor elements on creep rupture life of bicrystals
Fig.5  RX layer formed at high temperature (a) and cellular RX formed at temperature below the solution temperature (b)
Fig.6  Effect of recrystallization on high temperature creep properties of DS and SX alloys
Fig.7  Micro-porosities in as cast (a) and as hot isostatically pressed (HIPed) (b) DD33 superalloy

Process

Advantage

Shortcoming

Physical potential of the cooling effectiveness[112]

Estimate of cooling effectiveness in an industry process [112]

PDAS for large cored blades*μm

High rate

solidification (HRS)

Easy operation, technical maturity

Shadow effect, temperature gradient decreased with casting size increasing

1

0.6

400~600[112]

Gas cooling

casting (GCC)

High temperature gradient with little influence by casting size

shadow effect, complex operation

1.7

1.5

320[112]

Liquid metal

cooling (LMC-Sn)

High temperature gradient with little influence by casting size

Casting contamination, complex operation

1.45

1.5

220~350

Liquid metal

cooling (LMC-Al)

Relatively high temperature gradient with little influence by casting size

Casting contamination, complex operation

1

1

360[112]

Fluidized bed

cooling (FBC)

High temperature gradient with little influence by casting sizeAlloy and equipment contamination, complex operation--

330[112]

Table 4  Comparison of several directional solidification processes
Fig.8  Typical configuration (a) and microstructures (b) of a spiral grain selector (hs—length of screw pitch, ds—diameter of spiral, θ—initial angle of spiral, dw—diameter of helicoid)
[1] GiameiA F, KearB H. On the nature of freckles in nickel base superalloys [J]. Metall. Trans., 1970, 1: 2185
[2] CopleyS M, GiameiA F, JohnsonS M, , et al. The origin of freckles in unidirectionally solidified castings [J]. Metall. Trans., 1970, 1: 2193
[3] ReedR C. The Superalloys Fundamentals and Applications [M]. London: Cambridge University Press, 2006: 170
[4] ChangJ X, WangD, LiuT, , et al. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy [J]. Corros. Sci., 2015, 98: 585
[5] ChangJ X, WangD, LiuX G, , et al. Effect of rhenium addition on hot corrosion resistance of Ni-based single crystal superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4343
[6] GellM, DuhlD N, GiameiA F. The development of single crystal superalloy turbine blades [A]. Superalloys 1980 [C]. Warrendale, PA: TMS, 1980: 205
[7] HarrisK, EricksonG L, SikkengaS L, , et al. Development of the rhenium containing superalloys CMSX-4 & CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines [A]. Superalloys 1992 [C]. Warrendale, PA: TMS, 1992: 297
[8] WalstonW S, O'HaraK S, RossE W, , et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 27
[9] ArgenceD, VernaultC, DesvalléesY, , et al. MC-NG: A 4th generation single crystal superalloy for future aeronautical turbine blades and vanes [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 829
[10] GillesR, MukherjiD, StrunzP, , et al. Characterization of single crystal superalloy SC16 by small angle neutron scattering and complementary analytical techniques [J]. Scr. Mater., 1998, 38: 803
[11] FinkP J, MillerJ L, KonitzerD G. Rhenium reduction—Alloy design using an economically strategic element [J]. JOM, 2010, 62(1): 55
[12] WahlJ B, HarrisK. New single crystal superalloys, CMSX?-7 and CMSX?-8 [A]. Superalloys 2012 [C]. Warrendale, PA: TMS, 2012: 179
[13] SatoJ, OmoriT, OikawaK, , et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
[14] BauerA, NeumeierS, PyczakF, , et al. Creep properties of different γ'-strengthened Co-base superalloys [J]. Mater. Sci. Eng., 2012, A550: 333
[15] LuY Z, XieG, WangD, , et al. Anisotropy of high temperature creep properties of a Co-base single crystal superalloy [J]. Mater. Sci. Eng., 2018, A720: 69
[16] XueF, ZhouH J, FengQ. Improved high-temperature microstructural stability and creep property of novel Co-base single-crystal alloys containing Ta and Ti [J]. JOM, 2014, 66: 2486
[17] HarrisK, EricksonG L. Single crystal (single grain) alloy [P]. US Pat, 4582548, 1986
[18] ShahD M, CetelA. Evaluation of PWA 1483 for large single crystal IGT blade applications [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 295
[19] PollockT M, DibbernJ, TsunekaneM, , et al. New Co-based γ-γ′high-temperature alloys [J]. JOM, 2010, 62(1): 58
[20] KleinL, ShenY, KillianM S, , et al. Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys [J]. Corros. Sci., 2011, 53: 2713
[21] MurakumoT, KobayashiT, KoizumiY, , et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
[22] NathalM V. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys [J]. Metall. Trans., 1987, 18A: 1961
[23] MorinagaM, YukawaN, AdachiH, , et al. New PHACOMP and its applications to alloy design [A]. Superalloys 1984 [C]. Warrendale, PA: TMS, 1984: 523
[24] SeiserB, DrautzR, PettiforD G. TCP phase predictions in Ni-based superalloys: Structure maps revisited [J]. Acta Mater., 2011, 59: 749
[25] FleischmannE, MillerM K, AffeldtE, , et al. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys [J]. Acta Mater., 2015, 87: 350
[26] RettigR, RitterN C, HelmerH E, , et al. Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: Design based on thermodynamic calculations and experimental validation [J]. Modell. Simul. Mater. Sci. Eng., 2015, 23: 035004
[27] CruddenD J, MotturaA, WarnkenN, , et al. Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys [J]. Acta Mater., 2014, 75: 356
[28] YamagataT, HaradaH, NakazawaS, , et al. Alloy design for high strength nickel-base single crystal alloys [A]. Superalloys 1984 [C]. Warrendale, PA: TMS, 1984: 157
[29] KawagishiK, YokokawaT, KobayashiT, , et al. Development of low or zero-rhenium high-performance Ni-base single crystal superalloys for jet engine and power generation applications [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 115
[30] ReedR C, MotturaA, CruddenD J. Alloys-by-design: Towards optimization of compositions of nickel-based superalloys [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 15
[31] RaeC. Alloys by design: Modelling next generation superalloys [J]. Mater. Sci. Technol., 2009, 25: 479
[32] RettigR, MatuszewskiK, MüllerA, , et al. Development of a low-density rhenium-free single crystal nickel-based superalloy by application of numerical multi-criteria optimization using thermodynamic calculations [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 35
[33] DrewG L, ReedR C, KakehiK, , et al. Single crystal superalloys: The transition from primary to secondary creep [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 127
[34] RaeC M F, ReedR C. Primary creep in single crystal superalloys: Origins, mechanisms and effects [J]. Acta Mater., 2007, 55: 1067
[35] RaeC M F, RistM A, CoxD C, , et al. On the primary creep of CMSX-4 superalloy single crystal [J]. Metall. Mater. Trans., 2000, 31A: 2219
[36] DiologentF, CaronP. On the creep behavior at 1033 K of new generation single-crystal superalloys [J]. Mater. Sci. Eng., 2004, A385: 245
[37] LinkT, Feller-KniepmeierM. Shear mechanisms of the γ' phase in single-crystal superalloys and their relation to creep [J]. Metall. Trans., 1992, 23A: 99
[38] QiD Q, WangD, DuK, , et al. Creep deformation of a nickel-based single crystal superalloy under high stress at 1033 K [J]. J. Alloys Compd., 2018, 735: 813
[39] Academic Committee of the Superalloys, Chinese Society of Metals. China Superalloys Handbook (Book 2) [M]. Beijing: Standards Press of China, 2012: 1
[39] (中国金属学会高温材料分会. 中国高温合金手册(下卷) [M]. 北京: 中国标准出版社, 2012: 1)
[40] WilsonB C, FuchsG E. The effect of composition, misfit, and heat treatment on the primary creep behavior of single crystal nickel base superalloys PWA 1480 and PWA 1484 [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 149
[41] DuhlD N, GellM L. High strength corrosion resistant nickel base single crystal article [P]. UK Pat, 2112812A, 1983
[42] EricksonG L. The development and application of CMSX-10 [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 35
[43] PollockT M, ArgonA S. Creep resistance of CMSX-3 nickel base superalloy single crystals [J]. Acta Metall. Mater., 1992, 40: 1
[44] ZhangJ X, WangJ C, HaradaH, , et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep [J]. Acta Mater., 2005, 53: 4623
[45] WangX G, LiuJ L, JinT, , et al. Dislocation motion during high-temperature low-stress creep in Ru-free and Ru-containing single-crystal superalloys [J]. Mater. Des., 2015, 67: 543
[46] YueQ Z, LiuL, YangW C, , et al. Stress dependence of dislocation networks in elevated temperature creep of a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2019, A742: 132
[47] LiY F, WangL, ZhangG, , et al. Anisotropic stress rupture properties of a 3rd generation nickel-base single crystal superalloy at 1100 ℃/150 MPa [J]. Acta Metall. Sin. (Engl. Lett.), DOI: 10.1007/S40195-019-00931-1
[48] ZhangJ X, MurakumoT, HaradaH, , et al. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138 [J]. Scr. Mater., 2003, 48: 287
[49] ZhangJ X, KoizumiY, KobayashiT, , et al. Strengthening by γ/γ' interfacial dislocation networks in TMS-162—Toward a fifth-generation single-crystal superalloy [J]. Metall. Mater. Trans., 2004, 35A: 1911
[50] EggelerG, DlouhyA. On the formation of <010>-dislocations in the γ'-phase of superalloy single crystals during high temperature low stress creep [J]. Acta Mater., 1997, 45: 4251
[51] SrinivasanR, EggelerG, MillsM J. γ'-cutting as rate-controlling recovery process during high-temperature and low-stress creep of superalloy single crystals [J]. Acta Mater., 2000, 48: 4867
[52] ZhangJ X, MurakumoT, KoizumiY, , et al. Slip geometry of dislocations related to cutting of the γ' phase in a new generation single-crystal superalloy [J]. Acta Mater., 2003, 51: 5073
[53] TangY L, HuangM, XiongJ C, , et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta Mater., 2017, 126: 336
[54] RamF, LiZ M, ZaeffererS, , et al. On the origin of creep dislocations in a Ni-base, single-crystal superalloy: An ECCI, EBSD, and dislocation dynamics-based study [J]. Acta Mater., 2016, 109: 151
[55] MakineniS K, LenzM, NeumeierS, , et al. Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy [J]. Scr. Mater., 2018, 157: 62
[56] CoakleyJ, LassE A, MaD, , et al. Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures [J]. Acta Mater., 2017, 136: 118
[57] DingQ Q, LiS Z, ChenL Q, , et al. Re segregation at interfacial dislocation network in a nickel-based superalloy [J]. Acta Mater., 2018, 154: 137
[58] WangX G, LiuJ L, LiuJ D, , et al. Dependence of stacking faults in gamma matrix on low-cycle fatigue behavior of a Ni-based single-crystal superalloy at elevated temperature [J]. Scr. Mater., 2018, 152: 94
[59] RuttertB, MeidC, RonceryL M, , et al. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy [J]. Scr. Mater., 2018, 155: 139
[60] WenZ X, PeiH Q, YangH, , et al. A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes [J]. Int. J. Fatigue, 2018, 111: 243
[61] BrookingL, GrayS, SumnerJ, , et al. Effect of stress state and simultaneous hot corrosion on the crack propagation and fatigue life of single crystal superalloy CMSX-4 [J]. Int. J. Fatigue, 2018, 116: 106
[62] SteuerS, VillechaiseP, PollockT M, , et al. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy [J]. Mater. Sci. Eng., 2015, A645: 109
[63] HuC Y, LiuX L, TaoC H, , et al. Influence of cooling holes distribution on high cycle fatigue fracture behavior of DD6 single crystal superalloy [J]. J. Mater. Eng., 2017, 45(4): 84
[63] 胡春燕, 刘新灵, 陶春虎等. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响 [J]. 材料工程, 2017, 45(4): 84)
[64] CervellonA, CormierJ, MaugetF, , et al. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy [J]. Int. J. Fatigue, 2017, 104: 251
[65] Segers?llM, LeidermarkD, MoverareJ J. Influence of crystal orientation on the thermomechanical fatigue behaviour in a single-crystal superalloy [J]. Mater. Sci. Eng., 2015, A623: 68
[66] Segers?llM, KontisP, PedrazziniS, , et al. Thermal-mechanical fatigue behaviour of a new single crystal superalloy: Effects of Si and Re alloying [J]. Acta Mater., 2015, 95: 456
[67] LvJ J, WangA D, ChenC F. Thermal fatigue behavior of a nickel-base single crystal superalloy DD5 with secondary orientation [J]. Mater. Res. Express, 2018, 5: 1
[68] WangL, ZhouZ J, JiangW G, , et al. Effect of secondary orientation on thermal fatigue behavior of a nickel-base single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2014, 28: 663
[68] 王 莉, 周忠娇, 姜卫国等. 第二取向对镍基单晶高温合金DD33热疲劳性能的影响 [J]. 材料研究学报, 2014, 28: 663
[69] ZhouZ J, YuD Q, WangL, , et al. Effect of skew angle of holes on the thermal fatigue behavior of a Ni-based single crystal superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 185
[70] SatoA, ChiuY L, ReedR C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine application [J]. Acta Mater., 2011, 59: 225
[71] ZhangZ P, ZhangS Q, WangD, , et al. Effect of ppm level sulfur addition on isothermal oxidation behavior of a nickel-base single crystal superalloy [J]. Foundry, 2019, 68: 232
[71] 张宗鹏, 张思倩, 王 栋等. ppm级S对第二代抗热腐蚀镍基单晶高温合金恒温氧化行为的影响 [J]. 铸造, 2019, 68: 232
[72] SuzukiA S, KawagishiK, YokokawaT, , et al. Prediction of initial oxidation behavior of Ni-base single crystal superalloys: A new oxidation map and regression analysis [A]. Superalloys 2012 [C]. Warrendale, PA: TMS, 2012: 321
[73] PangH T, LiF, LiF, , et al. Effects of sea salt on the oxidation of CMSX-4? at 1100 ℃ [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 949
[74] LiJ R, ZhaoJ Q, LiuS Z, , et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 443
[75] StinvilleJ C, GallupK, PollockT M. Transverse creep of nickel-base superalloy bicrystals [J]. Metall. Mater. Trans., 2015, 46A: 2516
[76] WangY, WangD, ZhangG, , et al. Characterization of tilt and twist low angle grain boundaries and their effects on intermediate-temperature creep deformation behaviour [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 757
[77] RossE W, O'HaraK S. René N 4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 19
[78] ChenQ Z, JonesC N, KnowlesD M. The grain boundary microstructures of the base and modified RR 2072 bicrystal superalloys and their effects on the creep properties [J]. Mater. Sci. Eng., 2004, A385: 402
[79] XieG, WangL, ZhangJ, , et al. Influence of recrystallization on the high-temperature properties of a directionally solidified Ni-base superalloy [J]. Metall. Mater. Trans., 2008, 39A: 206
[80] XieG, WangL, ZhangJ, , et al. High temperature creep of directionally solidified Ni-base superalloys containing local recrystallization [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 453
[81] ZhengY R, RuanZ C, WangS C. Surface recrystallization of DZ22 alloy and its effect on the creep rupture property [J]. Acta Metall. Sin., 1995, 31(suppl.): 325
[81] 郑运荣, 阮中慈, 王顺才. DZ22合金的表层再结晶及其对持久性能的影响 [J]. 金属学报, 1995, 31(增刊):325)
[82] SunZ G. Recrystallization behaviour of Ni-base superalloy DZ17G [D]. Shenyang: Northeastern University, 2007
[82] 孙志国. DZ17G镍基高温合金再结晶行为研究 [D]. 沈阳: 东北大学, 2007
[83] KhanT, CaronP, NakagawaY G. Mechanical behavior and processing of DS and single crystal superalloys [J]. JOM, 1986, 38(7): 16
[84] WangD L. Recrystallization of several Ni-base superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006
[84] 王东林. 几种镍基高温合金再结晶问题的研究 [D]. 沈阳: 中国科学院金属研究所, 2006
[85] MengJ, JinT, SunX F, , et al. Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2010, A527: 6119
[86] ZhangB, LuX, LiuD L, , et al. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy [J]. Mater. Sci. Eng., 2012, A551: 149
[87] ShiZ X, LiuS Z, WangX G, , et al. Effects of heat treatment on surface recrystallization and stress rupture properties of a fourth-generation single-crystal superalloy after grit blasting [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 614
[88] ZhangJ, LouL H. Basic research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637(张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637
[89] OkazakiM, HiuraT, SuzukiT. Effect of local cellular transformation on fatigue small crack growth in CMSX-4 and CMSX-2 at high temperature [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 505
[90] MaX, ShiH J, GuJ, , et al. Influence of surface recrystallization on the low cycle fatigue behaviour of a single crystal superalloy [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 340
[91] LammM, SingerR F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans., 2007, 38A: 1177
[92] PrasadK, SarkarR, GopinathK. Role of shrinkage pores, carbides on cyclic deformation behaviour of conventionally cast nickel base superalloy CM247LC? at 870 ℃ [J]. Mater. Sci. Eng., 2016, A654: 381
[93] WangQ G, ApelianD, LadosD A. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects [J]. J. Light Met., 2001, 1: 73
[94] JiangR, BullD J, EvangelouA, , et al. Strain accumulation and fatigue crack initiation at pores and carbides in a SX superalloy at room temperature [J]. Int. J. Fatigue, 2018, 114: 22
[95] NieB H, ZhaoZ H, LiuS, , et al. Very high cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ4 [J]. Materials, 2018, 11: 98
[96] TianS G, ZhouH H, ZhangJ H, , et al. The creep-damage behaviour of a single crystal nickel-base superalloy [J]. Acta Meta. Sin., 1998, 34: 57
[96] 田素贵, 周惠华, 张静华等. 一种单晶镍基合金的高温蠕变损伤[J]. 金属学报, 1998, 34: 57
[97] PardoenT, DumontD, DeschampsA, , et al. Grain boundary versus transgranular ductile failure [J]. J. Mech. Phys. Solids, 2003, 51: 637
[98] WenZ X, GouW X, YueZ F. Crack propagation paths and fracture of Ni-based single crystal [J]. Rare. Met. Mater. Eng., 2007, 36: 1549
[98] 温志勋, 苟文选, 岳珠峰. 镍基单晶裂纹扩展路径研究 [J]. 稀有金属材料与工程, 2007, 36: 1549
[99] TvergaardV. Material failure by void growth to coalescence [J]. Adv. Appl. Mech., 1989, 27: 83
[100] KomendaJ, HendersonP J. Growth of pores during the creep of a single crystal nickel-base superalloy [J]. Scr. Mater., 1997, 37: 1821
[101] Le GraverendJ B, CormierJ, KruchS, , et al. Microstructural parameters controlling high-temperature creep life of the nickel-base single-crystal superalloy MC2 [J]. Metall. Mater. Trans., 2012, 43A: 3988
[102] GursonA L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media [J]. J. Eng. Mater. Technol., 1977, 99: 2
[103] WenJ, HuangY, HwangK C, , et al. The modified Gurson model accounting for the void size effect [J]. Int. J. Plast., 2005, 21: 381
[104] WeckA, WilkinsonD S, MaireE. Observation of void nucleation, growth and coalescence in a model metal matrix composite using X-ray tomography [J]. Mate. Sci. Eng., 2008, A488: 435
[105] AtkinsonH V, DaviesS. Fundamental aspects of hot isostatic pressing: An overview [J]. Metall. Mater. Trans., 2000, 31A: 2981
[106] FritzemeierL G. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy [A]. Superalloys 1988 [C]. Warrendale, PA: TMS, 198: 265
[107] ChangJ C, ChoiC, KimJ C, , et al. Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing [J]. J. Mater. Eng. Perform., 2003, 12: 420
[108] JeonJ H, GodfreyA B, BlenkinsopP A, , et al. Recrystallization in cast 45-2-2 XDTM titanium aluminide during hot isostatic pressing [J]. Mater. Sci. Eng., 1999, A271: 128
[109] LiuL. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273
[109] 刘 林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273
[110] LiuL, SunD J, HuangT W, , et al. Directional solidification under high thermal gradient and its application in superalloys processing [J]. Acta Metall. Sin., 2018, 54: 615
[110] 刘 林, 孙德建, 黄太文等. 高梯度定向凝固技术及其在高温合金制备中的应用 [J]. 金属学报, 2018, 54: 615
[111] MaD X. Development of single crystal solidification technology for production of superalloy turbine blades [J]. Acta Metall. Sin., 2015, 51: 1179
[111] 马德新. 高温合金叶片单晶凝固技术的新发展 [J]. 金属学报, 2015, 51: 1179
[112] KonterM, KatsE, HofmannN. A novel casting process for single crystal gas turbine components [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 189
[113] MaD X, Bührig- PolaczekA. Form and method of producing a casting [P]. German Pat, DE1020007014744, 2008
[114] MaD X, Bührig-PolaczekA. Application of a heat conductor technique in the production of single-crystal turbine blades [J]. Metall. Mater. Trans., 2009, 40B: 738
[115] ZhangJ, LouL H. Directional solidification assisted by liquid metal cooling [J]. J. Mater. Sci. Technol., 2007, 23: 289
[116] FrankeM M, HilbingerR M, LohmüllerA, , et al. The effect of liquid metal cooling on thermal gradients in directional solidification of superalloys: Thermal analysis [J]. J. Mater. Process. Technol., 2013, 213: 2081
[117] HuangS C, RutkowskiS F, GigliottiM X, , et al. Casting processes, casting apparatuses therefor, and castings produced thereby [P]. US Pat, 20100304161, 2010
[118] ShenJ, XuZ G, LuY Z, , et al. Reaction of Ni-based superalloy with liquid Sn during liquid-metal-cooled directional solidification [J]. Metall. Mater. Trans., 2018, 49A: 4003
[119] HofmeisterM, FrankeM M, KoernerC, , et al. Single crystal casting with fluidized carbon bed cooling: A process innovation for quality improvement and cost reduction [J]. Metall. Mater. Trans., 2017, 48B: 3132
[120] ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy I. Starter block of grain selector [J]. Acta Metall. Sin., 2013, 49: 1508
[120] 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: Ι. 引晶段 [J]. 金属学报, 2013, 49: 1508
[121] DaiH J, J-CGebelin, NewellM, , et al. Grain selection during solidification in spiral grain selector [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 367
[122] SunD J, LiuL, HuangT W, , et al. Formation of lateral sliver defects in the platform region of single-crystal superalloy turbine blades [J]. Metall. Mater. Trans., 2019, 50A: 1119
[123] AvesonJ W, TennantP A, FossB J, , et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162
[124] ReinhartG, Nguyen-ThiH, Mangelinck-No?lN, , et al. In situ investigation of dendrite deformation during upward solidification of Al-7wt.%Si [J]. JOM, 2014, 66: 1408
[125] AvesonJ W, ReinhartG, Nguyen-ThiH, , et al. Dendrite bending during directional solidification [A]. Superalloys 2012 [C]. Warrendale, PA: TMS, 2012: 615
[126] SiredeyN, BoufoussiM, DenisS, , et al. Dendritic growth and crystalline quality of nickel-base single grains [J]. J. Cryst. Growth, 1993, 130: 132
[127] HenryS, MinghettiT, RappazM. Dendrite growth morphologies in aluminium alloys [J]. Acta Mater., 1998, 46: 6431
[128] HuangY Q, ShenJ, WangD, , et al. On the formation and evolution of sliver in Ni-base single crystal superalloy [J]. Metall. Mater. Trans. A, submitted
[129] PanwisawasC, MathurH, GebelinJ C, , et al. Prediction of recrystallization in investment cast single-crystal superalloys [J]. Acta Mater., 2013, 61: 51
[130] LiZ L, XiongJ C, XuQ Y, , et al. Deformation and recrystallization of single crystal nickel-based superalloys during investment casting [J]. J. Mater. Process. Technol., 2015, 217: 1
[131] WangL, PyczakF, ZhangJ, , et al. Effect of eutectics on plastic deformation and subsequent recrystallization in the single crystal nickel base superalloy CMSX-4 [J]. Mater. Sci. Eng., 2012, A532: 487
[132] WangL, XieG, ZhangJ, , et al. On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy [J]. Scr. Mater., 2006, 55: 457
[133] MathurH N, PanwisawasC, JonesC N, , et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys [J]. Acta Mater., 2017, 129: 112
[134] LiuL R, PengZ J, LinJ X, , et al. Study on nucleation site and mechanism of recrystallization behavior for DD6 nickel-base single crystal superalloy [J]. Foundry, 2014, 63: 1142
[134] 刘丽荣, 彭志江, 林佳新等. DD6单晶高温合金再结晶形核位置和机制研究 [J]. 铸造, 2014, 63: 1142
[135] LiZ L, ZhangD D, SuX L, , et al. Role of as-cast dendritic microstructure in recrystallization of a Ni-based single crystal superalloy [J]. J. Alloys Compd., 2016, 660: 115
[136] JamesA W, WagnerG P, SethB B. Cold spray repair process [P]. US Pat, US6491208B2, 2002
[137] CorriganJ, VogtR G, MihalisinJ R, , et al. Single crystal superalloy articles with reduced grain recrystallization [P]. Europe Pat, EP1038982A1, 2000
[138] SalkeldR W, FieldT T, AultE A. Preparation of single crystal superalloys for post-casting heat treatment [P]. US Pat, US 5413648, 1995
[139] XieG, ZhangJ, LouL H. Effect of cyclic recovery heat treatment on surface recrystallization of a directionally solidified superalloy [J]. Prog. Nat. Sci. Mater. Int., 2011, 21: 491
[140] BabuS S, RaghavanN, RapleeJ, , et al. Additive manufacturing of nickel superalloys: Opportunities for innovation and challenges related to qualification [J]. Metall. Mater. Trans., 2018, 49A: 3764
[141] LiangY J, ChengX, LiJ, , et al. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys: New processing—microstructure maps involving powder feeding [J]. Mater. Des., 2017, 130: 197
[142] PistorJ, K?rnerC. Formation of topologically closed packed phases within CMSX-4 single crystals produced by additive manufacturing [J]. Mater. Lett., 2019, 1X: 100003
[143] RamspergerM, K?rnerC. Selective electron beam melting of the single crystalline nickel-base superalloy CMSX-4?: From columnar grains to a single crystal [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 341
[144] K?rnerC, RamspergerM, MeidC, , et al. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing [J]. Metall. Mater. Trans., 2018, 49A: 3781
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[9] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[12] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!