Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (6): 701-708    DOI: 10.11900/0412.1961.2018.00347
Current Issue | Archive | Adv Search |
Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy
Chunbo LAN1,2,Jianeng LIANG1,Yuanxia LAO1,Dengfeng TAN1,Chunyan HUANG1,Xianzhong MO1,Jinying PANG1()
1. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Cite this article: 

Chunbo LAN,Jianeng LIANG,Yuanxia LAO,Dengfeng TAN,Chunyan HUANG,Xianzhong MO,Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy. Acta Metall Sin, 2019, 55(6): 701-708.

Download:  HTML  PDF(10109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermal expansion behavior is one of the intrinsic properties of most materials, which is very difficult to control their thermal expansion behavior. Metallic material with ultra-low coefficient of thermal expansion named Invar effect was first found in Fe-Ni alloys. Recently, a multifunctional titanium alloy termed Gum metal (the typical composition is Ti-36Nb-2Ta-3Zr-0.3O, mass fraction, %; three electronic parameters: electron per atom ratio e/a≈4.24, bond order Bo≈2.87 and d electron orbital energy level Md≈2.45 eV) has been developed, and the alloy exhibits Invar effect after severe cold working. It is well known that the Invar effect of Fe-Ni alloys is related to the magnetic transition. However, titanium and its alloys are paramagnetic, and thus this mechanism cannot be used to explain Invar effect of Gum metal. In addition, the Invar effect of Gum metal is related to a dislocation-free plastic deformation mechanism. So far, there is still some controversy about this mechanism. In this study, a new β-type Ti-Nb base alloy Ti-35Nb-2Zr-0.3O (mass fraction, %) was developed whose three electronic parameters are different from those of the above mentioned Gum metal. The alloy was melted under high-purity argon atmosphere in an electric arc furnace, and the effects of cold rolling on microstructures and thermal expansion behaviors were characterized by OM, XRD, SEM, TEM and thermal mechanical analyzer (TMA). Results showed that the stress-induced martensitic α" (SIM α") phase transformation occurs after cold rolling, and the dominant <110> texture forms after severe plastic deformation. The equiaxed grains of Ti-35Nb-2Zr-0.3O alloy exhibit ordinary positive thermal expansion behavior and the thermal expansion rate increases with the increase of temperature. After cold deformation, negative thermal expansion occurs along rolling direction, and normal thermal expansion higher than solution treated sample occurs along transverse direction. The abnormal thermal expansion extent of the alloy increases with the increase of deformation reduction. The 30% cold deformed alloy along rolling direction possesses Invar effect between room temperature to 250 ℃, which is possibly related to SIM α" phase transformation, lattice distortion and <110> texture formation. The anomalous thermal expansion of the cold deformed samples in a temperature range from 25 ℃ to 110 ℃ is attributed to the lattice transition of SIM α" to β phase, while above 110 ℃ is attributed to the precipitation of ω and α phases.

Key words:  Ti-35Nb-2Zr-0.3O alloy      cold rolling      microstructure      anomalous thermal expansion     
Received:  25 July 2018     
ZTFLH:  TG146  
Fund: Guangxi Natural Science Foundation(Nos.2018GXNSFAA138057);Guangxi Natural Science Foundation(2018JJA110055);Open Foundation of Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University(Nos.GXYSOF1802);Open Foundation of Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University(GXYSOF1810)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00347     OR     https://www.ams.org.cn/EN/Y2019/V55/I6/701

Fig.1  OM images of Ti-35Nb-2Zr-0.3O alloy under ST (a), 30%CR (b), 60%CR (c) and 90%CR (d) (ST—solution treated, CR—cold rolled, RD—rolling direction. Arrows in Figs.1b and c show the deformation bands)
Fig.2  Inverse pole figures of Ti-35Nb-2Zr-0.3O alloy under ST (a) and 90%CR (b)
Fig.3  XRD spectra of Ti-35Nb-2Zr-0.3O alloy under ST and different CR deformation reductions
Fig.4  Thermal expansion curves of Ti-35Nb-2Zr-0.3O alloy under ST and different CR deformation reductions (TD—transverse direction)
Fig.5  Cyclic thermal expansion curves of 90%CR Ti-35Nb-2Zr-0.3O alloy at 100 ℃ (a), 200 ℃ (b), 300 ℃ (c), 400 ℃ (d) and 500 ℃ (e)
Fig.6  Thermal expansion and expansion coefficient curves of 90%CR Ti-35Nb-2Zr-0.3O alloy from room temperature to 850 ℃
Fig.7  TEM images of 90%CR Ti-35Nb-2Zr-0.3O alloy ageing at 300 ℃ (a), 350 ℃ (b), 450 ℃ (c) for 1 h and schematic of SAED patterns of α and ω phases on the [110]β zone axis (d) (Insets in Figs.7a~c show the SAED patterns)
[1] Kainuma R, Wang J J, Omori T, et al. Invar-type effect induced by cold-rolling deformation in shape memory alloys [J]. Appl. Phys. Lett., 2002, 80: 4348
[2] Nakai M, Niinomi M, Akahori T, et al. Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy [J]. Mater. Trans., 2009, 50: 423
[3] Guillaume C E. The anomaly of the nickel-steels [J]. Proc. Phys. Soc. London, 1920, 32: 374
[4] Li X F, Chen N N, Li J J, et al. Effect of temperature and strain rate on deformation behavior of Invar 36 alloy [J]. Acta. Metall. Sin., 2017, 53: 968
[4] (李细锋, 陈楠楠, 李佼佼等. 温度与应变速率对Invar 36合金变形行为的影响 [J]. 金属学报, 2017, 53: 968)
[5] Abdel-Hady M, Morinaga M. Controlling the thermal expansion of Ti alloys [J]. Scr. Mater., 2009, 61: 825
[6] Chen J, Hu L, Deng J X, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications [J]. Chem. Soc. Rev., 2015, 44: 3522
[7] Liu X N, Lin K, Gao Q L, et al. Structure and phase transformation in the giant magnetostriction laves-phase SmFe2 [J]. Inorg. Chem., 2017, 57: 689
[8] Song Y Z, Chen J, Liu X Z, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds [J]. J. Am. Chem. Soc., 2018, 140: 602
[9] Kuramoto S, Furuta T, Hwang J H, et al. Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy [J]. Metall. Mater. Trans., 2006, 37A: 657
[10] Furuta T, Kuramoto S, Chen R, et al. Effect of oxygen on phase stability and elastic deformation behavior in Gum metal [J]. J. Jpn. Inst. Met., 2006, 70: 579
[11] Wang W, Huang R, Zhao Y, et al. Adjustable zero thermal expansion in Ti alloys at cryogenic temperature [J]. J. Alloys Compd., 2018, 740: 47
[12] Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
[13] Xing H, Guo W Y, Sun J. Substructure of recovered Ti-23Nb-0.7Ta-22r-O alloy [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 1456
[14] Talling R J, Dashwood R J, Jackson M, et al. On the mechanism of superelasticity in Gum metal [J]. Acta Mater., 2009, 57: 1188
[15] Talling R J, Dashwood R J, Jackson M, et al. Compositional variability in Gum metal [J]. Scr. Mater., 2009, 60: 1000
[16] Besse M, Castany P, Gloriant T. Mechanisms of deformation in Gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence [J]. Acta Mater., 2011, 59: 5982
[17] Yang Y, Li G P, Cheng G M, et al. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy [J]. Appl. Phys. Lett., 2009, 94: 061901
[18] Kim H Y, Wei L S, Kobayashi S, et al. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy [J]. Acta Mater., 2013, 61: 4874
[19] Gutkin M Y, Ishizaki T, Kuramoto S, et al. Nanodisturbances in deformed Gum metal [J]. Acta Mater., 2006, 54: 2489
[20] Wei L S, Kim H Y, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys [J]. Acta Mater., 2015, 100: 313
[21] Lan C B, Li G, Wu Y, et al. Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-2Zr-0.3O alloy for biomedical applications [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1537
[22] Lan C B, Wu Y, Chen F. Effects of cold rolling on microstructure and anomalous thermal expansion behaviors of Ti-35Nb-2Zr-0.3O alloy [J]. Key Eng. Mater., 2017, 729: 46
[23] Guo W, Quadir M Z, Ferry M. The mode of deformation in a cold-swaged multifunctional Ti-Nb-Ta-Zr-O alloy [J]. Metall. Mater. Trans., 2013, 44A: 2307
[24] J W Jr Morris, Hanlumyuang Y, Sherburne M, et al. Anomalous transformation-induced deformation in <110> textured Gum metal [J]. Acta Mater., 2010, 58: 3271
[25] Lan C B, Wu Y, Guo L L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 788
[26] Lan C B, Wu Y, Guo L L, et al. Effects of cold rolling on microstructure, texture evolution and mechanical properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.3O alloy for biomedical applications [J]. Mater. Sci. Eng., 2017, A690: 170
[27] Hwang J, Kuramoto S, Furuta T, et al. Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys [J]. J. Mater. Eng. Perform., 2005, 14: 747
[28] Wei Q Q, Wang L Q, Fu Y F, et al. Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy [J]. Mater. Des., 2011, 32: 2934
[29] Wang Y, Gao J H, Wu H J, et al. Strain glass transition in a multifunctional β-type Ti alloy [J]. Sci. Rep., 2015, 4: 3995
[30] Kim H Y, Sasaki T, Okutsu K, et al. Texture and shape memory behavior of Ti-22Nb-6Ta alloy [J]. Acta Mater., 2006, 54: 423
[31] Afonso C R M, Ferrandini P L, Ramirez A J, et al. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti-35Nb-7Zr-5Ta alloy for implant applications [J]. Acta Biomater., 2010, 6: 1625
[32] Málek J, Hnilica F, Vesely J, et al. The influence of chemical composition and thermo-mechanical treatment on Ti-Nb-Ta-Zr alloys [J]. Mater. Des., 2012, 35: 731
[33] Guo Q H, Zhan Y Z, Mo H L, et al. Aging response of the Ti-Nb system biomaterials with β-stabilizing elements [J]. Mater. Des., 2010, 31: 4842
[34] Ferrandini P L, Cardoso F F, Souza S A, et al. Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys [J]. J. Alloys Compd., 2007, 433: 207
[35] Guo W Y, Li J, Sun J. Thermal expansion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy [J]. Mater Res. Appl., 2010, 4: 169
[35] (郭文渊, 李 俊, 孙 坚. Ti-23Nb-0.7Ta-2Zr-O合金的热膨胀行为 [J]. 材料研究与应用, 2010, 4: 169)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!