|
|
SUPERPLASTICITY RESEARCH OF Ti-23Al-17Nb ALLOY SHEET |
FU Mingjie1( ), HAN Xiuquan1, WU Wei1, ZHANG Jianwei2 |
1 Metal Forming Technology Department, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 2 High Temperature Materials Research Department, Central Iron and Steel Research Institute, Beijing 100081 |
|
Cite this article:
FU Mingjie, HAN Xiuquan, WU Wei, ZHANG Jianwei. SUPERPLASTICITY RESEARCH OF Ti-23Al-17Nb ALLOY SHEET. Acta Metall Sin, 2014, 50(8): 955-961.
|
Abstract Superplastic forming is one of effective method to solve the forming difficulty of Ti3Al based alloy. In this work, the superplasticity of Ti-23Al-17Nb alloy sheet under the conditions of 940~1000 ℃ and 1.7×10-3~5.5×10-5 s-1 are studied. The results show the elongation changes as a parabola with the deformation temperature increasing, and the maximum elongation obtained at 960 ℃ and 5.5×10-5 s-1 is 1447.5%. Deformation hardening period increases much more than soften period due to the increasing of element Nb under low strain rate. Compared with primary microstructure, the superplastic deformation could eliminate the texture, the lath-like α2 grains gradually disappeared, the α2 grains became more equiaxed, and the content and size of α2 grains are decreasing with increasing of deformation temperature, the volume fraction of α2 and B2 phase could reach the optimum deformation at 50∶50. A constitutive relationship based on the Zener-Hollomn parameter and Arrhenius equation was defined for the TAC-1B alloy, and the deformation activation energy Q=390.76 kJ/mol. The results could provide a theory basis for the design and control of TAC-1B alloy superplastic forming process.
|
Received: 27 January 2014
|
|
Fund: Supported by Aeronautical Science Foundation of China (No.20121125001) |
[1] |
Zhang J W, Li S Q, Liang X B, Cheng Y J. Chin J Nonferrous Met, 2010; 20(spec 1): s336
|
|
(张建伟, 李世琼, 梁晓波, 程云君. 中国有色金属学报, 2010; 20(特辑1): s336)
|
[2] |
Yang H S, Jin P, Mukherjee A K. Mater Sci Eng, 1992; A153: 457
|
[3] |
Pilling J, Ridley N, Islam M F. Mater Sci Eng, 1996; A205: 72
|
[4] |
Imayev R, Gabdullin N, Salishchev G. Intermetallics, 1997; 5: 229
|
[5] |
Fu H C, Huang J C, Wang T D, Bampton C C. Acta Mater, 1998; 46: 465
|
[6] |
Dutta A, Banerjee D. Scr Metall, 1990; 24: 1319
|
[7] |
Kim J H, Park C G, Ha T K, Chang Y W. Mater Sci Eng, 1999; A269: 197
|
[8] |
Liauo C S, Fu H C, Hsiao I C, Huang J C. Mater Sci Eng, 1999; A271: 275
|
[9] |
Bendersky L A, Boettinger W J, Roytburd A. Acta Metall Mater, 1991; 39: 1959
|
[10] |
Muraleedharan K, Nandy T K, Banerjee D, Lele S. Metall Trans, 1992; 23A: 401
|
[11] |
Baeslack ΙΙΙ W A, Broderick T. Sci Technol, 1995; 11: 150
|
[12] |
Wu Y T, Koo C H. Intermetallics, 1997; 5: 29
|
[13] |
Cheng Y J, Han J T, Zhang J W, Liang X B. Chin J Nonferrous Met, 2010; 20(spec 1): s216
|
|
(程云君, 韩积亭, 张建伟, 梁晓波. 中国有色金属学报, 2010; 20(特辑1): s216)
|
[14] |
Zhang J W, Zhang H S, Zhang X C, Liang X B, Cheng Y J, Li S Q. Rare Met Mater Eng, 2010; 39: 372
|
|
(张建伟, 张海深, 张学成, 梁晓波, 程云君, 李世琼. 稀有金属材料与工程, 2010; 39: 372)
|
[15] |
Jobart D, Blandin J J. Mater Sci Eng, 1996; A207: 170
|
[16] |
Zhang X M, Cao F Y, Yue H Y, Feng Y C, Guo E J, Kang F W. Rare Met Mater Eng, 2013; 42: 937
|
|
(张雪敏, 曹福洋, 岳红彦, 冯义成, 郭二军, 康福伟. 稀有金属材料与工程, 2013; 42: 937)
|
[17] |
Zhao J G, Zhang S H, Cheng M, Song H W. Chin J Rare Met, 2009; 33: 153
|
|
(赵建国, 张士宏, 程 明, 宋鸿武. 稀有金属, 2009; 33: 153)
|
[18] |
Fu M J, Jing Y J, Zhang J. Mater Eng, 2011; (5): 62
|
|
(付明杰, 静永娟, 张 继. 材料工程, 2011; (5): 62)
|
[19] |
Wu Z G, Li D F. Chin J Nonferrous Met, 2010; 20: 1321
|
|
(吾志岗, 李德富. 中国有色金属学报, 2010; 20: 1321)
|
[20] |
Guo H P, Zeng Y S, Li Z Q. Aeronaut Manuf Technol, 2009; (10): 64
|
|
(郭和平, 曾元松, 李志强. 航空制造技术, 2009; (10): 64)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|