Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 305-312    DOI: 10.3724/SP.J.1037.2013.00443
Current Issue | Archive | Adv Search |
ELECTRON MICROSCOPY STUDY OF FIVE-FOLD TWINS IN ELECTRODEPOSITED NANO-TWIN Ni
SHAN Haiquan1, ZHANG Yuefei1(), MAO Shengcheng1, ZHANG Ze2
1 Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124
2 Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058
Cite this article: 

SHAN Haiquan, ZHANG Yuefei, MAO Shengcheng, ZHANG Ze. ELECTRON MICROSCOPY STUDY OF FIVE-FOLD TWINS IN ELECTRODEPOSITED NANO-TWIN Ni. Acta Metall Sin, 2014, 50(3): 305-312.

Download:  HTML  PDF(12956KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanocrystalline Ni thin films with high density nano-scale growth twins were synthesized by direct electrodeposition technology. The five-fold twinning structure in electrodeposited nano-twin Ni was systematically investigated by TEM. The remarkable diffraction pattern and HRTEM images obtained from the cross-section observation demonstrate directly that the electrodeposited nano-twin Ni has five-fold twinning structure with five {111} twinned subcrystals and systematically analyzed the 7.35° intrinsic structural gap. In this work, the 7.35°gap was at least inset in two twin boundaries of the five-fold twin, the twin boundaries which share the 7.35° gap always broaden and was decomposed into other twins, so that, the grain present a irregular shape. cross-sectional TEM micrograph revealed that the electrodeposited nano-twin Ni had columnar grain structure with a strong {110} texture. By means of comprehensive structure characterization, a new space structural model of the five-fold twin was proposed.

Key words:  electrodeposition      nanao-twin Ni      microstructure      transmission electron microscopy (TEM)      five-fold twin     
Received:  25 July 2013     
ZTFLH:  TG146.15  
  TG113.11  
Fund: Supported by National Natural Science Foundation of China (Nos.11374027 and 51001003) and Key Project Funding Scheme of Beijing Municipal Education Committee (No.KZ201010005002)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00443     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/305

Fig.1  

纳米孪晶Ni中五次对称孪晶结构的TEM像

Fig.2  

纳米孪晶Ni中五次孪晶的高分辨图像及快速Fourier变换图

Fig.3  

孪晶界的高分辨图像进行FFT得到的二次电子衍射图以及根据实验结果提出的五次孪晶平面结构模型

Fig.4  

电沉积纳米孪晶Ni的截面TEM像及空间结构示意图

Fig.5  

电沉积纳米孪晶Ni中五次孪晶的HRTEM像及FFT图

Fig.6  

五次对称形核过程示意图

[1] Hermann C. Z Kristallogr, 1931; 79: 186
[2] Segall R L. J Met, 1957; 9: 50
[3] Melmed A J, Hayward D O. J Chem Phys, 1959; 31: 545
[4] Zhu Y T, Liao X Z, Valiev R Z. Appl Phys Lett, 2005; 86: 103112
[5] Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[6] Cao A J, Wei Y G. Appl Phys Lett, 2006; 89: 041919
[7] Shao Y F, Wang S Q. Scr Mater, 2010; 62: 419
[8] Huang P, Dai G Q, Wang F, Xu K W, Li Y H. Appl Phys Lett, 2009; 95: 203101
[9] Bringa E M, Farkas D, Caro A, Wang Y M, McNaney J, Smith R. Scr Mater, 2008; 59: 1267
[10] Lucadamo G, Medlin D L, Yang N Y C, Kelly J J, Talin A A. Philos Mag, 2005; 85: 2549
[11] Sun Y G, Ren Y, Liu Y Z, Wen J G, Okasinski J S, Miller D J. Nat Commun, 2012; 3: 971
[12] Narayan J, Srivatsa A R, Ravi K V. Appl Phys Lett, 1989; 54: 1659
[13] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 249
[14] Xia Y N, Xiong Y J, Lim B, Skrabalak S E. Angew Chem Int Ed, 2009; 48: 60
[15] Marks L D. Rep Prog Phys, 1994; 57: 603
[16] Hofmeister H. Cryst Res Technol, 1998; 33: 1
[17] Hofmeister H. Encyclopedia Nanosci Nanotechnol, 2003; 3: 431
[18] Li Q, Shao M W, Zhang S Y, Liu X M, Li G P, Jiang K, Qian Y T. J Crystal Growth, 2002; 243: 327
[19] Fu X, Jiang J, Zhang W Z, Yuan J. Appl Phys Lett, 2008; 93: 043101
[20] Chen H Y, Li J Q, Gao Y, Xie S S. Chin Electro Microsc Soc,2005; 24: 1
[21] Cheng Y H, Zhang Y F, Mao S C, Han X D, Zhang Z. Acta Metall Sin, 2012; 48: 1342
(成宇浩, 张跃飞, 毛圣成, 韩晓东, 张 泽. 金属学报, 2012; 48: 1342)
[22] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[23] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[24] Hsiao H Y, Liu C M, Lin H W, Liu T C, Lu C L, Huang Y S, Chen C, Tu K N. Science, 2012; 336: 1007
[25] Qu S X, Wang G M, Zhou H F, Huang Z L. Comput Mater Sci, 2011; 50: 1567
[26] Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275
[27] Zhou G D,Guo K X. Electron Diffraction of Crystals and Quasicrystals. Beijing: Beijing University Press,1999: 222
(周公度,郭可信. 晶体和准晶体的衍射. 北京: 北京大学出版, 1999: 222)
[28] Ino S, Ogawa S. J Phys Soc Jpn, 1967; 22: 1365
[29] Li N, Wang J, Zhang X, Misra A. JOM, 2011; 63(9): 62
[30] Gryaznov V G, Kaprelov A M, Heydenreich J. Cryst Res Technol, 1999; 34: 1901
[31] Amblard J, Epelboin I, Froment M, Maurin G. J Appl Electrochem, 1979; 9: 233
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!